[1] BANCI L, BERTINI I, GRAY H B, et al. Solution structure of oxidized horse heart cytochrome c[J]. Biochem, 1997, 36(32):9867-9877. [2] FETROW J S, BAXTER S M. Assignment of N-15 chemical shifts and N-15 relaxation measurements for oxidized and reduced iso-1-cytochrome c[J]. Biochem, 1999, 38(14):4480-4492. [3] KALPAGE H A, BAZYLIANSKA V, RECANATI M A, et al. Tissue-specific regulation of cytochrome c by post-translational modifications:respiration, the mitochondrial membrane potential, ROS, and apoptosis[J]. Faseb J, 2019, 33(2):1540-1553. [4] LIU X S, KIM C N, YANG J, et al. Induction of apoptotic program in cell-free extracts:Requirement for dATP and cytochrome c[J]. Cell, 1996, 86(1):147-157. [5] ZAIDI S, HASSAN M I, ISLAM A, et al. The role of key residues in structure, function, and stability of cytochrome-c[J]. Cell Mol Life Sci, 2014, 71(2):229-255. [6] ALVAREZ-PAGGI D, HANNIBAL L, CASTRO M A, et al. Multifunctional cytochrome c:Learning new tricks from an old dog[J]. Chem Rev, 2017, 117(21):13382-13460. [7] OVIEDO-ROUCO S, CASTRO M A, ALVAREZ-PAGGI D, et al. The alkaline transition of cytochrome c revisited:Effects of electrostatic interactions and tyrosine nitration on the reaction dynamics[J]. Arch Biochem Biophys, 2019, 665:96-106. [8] MUNEESWARAN G, KARTHEESWARAN S, MUTHUKUMAR K, et al. Temperature-dependent conformational dynamics of cytochrome c:Implications in apoptosis[J]. J Mol Graph Model, 2018, 79140-148. [9] DONG A, BROWN C, BAI S, et al. Acid-enhanced conformation changes of yeast cytochrome c coated onto gold nanoparticles, a FT-IR spectroscopic analysis[J]. Int J Biol Macromol, 2018, 112591-597. [10] DANIELSON T A, STINE J M, DAR T A, et al. Effect of an imposed contact on secondary structure in the denatured state of yeast iso-1-cytochrome c[J]. Biochem, 2017, 56(51):6662-6676. [11] BAISTROCCHI P, BANCI L, BERTINI I, et al. Three-dimensional solution structure of Saccharomyces cerevisiae reduced iso-1-cytochrome c[J]. Biochem, 1996, 35(43):13788-13796. [12] IMAI M, SAIO T, KUMETA H, et al. Investigation of the redox-dependent modulation of structure and dynamics in human cytochrome c[J]. Biochem Biophys Res Commun, 2016, 469(4):978-984 [13] BARAYEU U, LANGE M, MENDEZ L, et al. Cytochrome c autocatalyzed carbonylation in the presence of hydrogen peroxide and cardiolipins[J]. J Biol Chem, 2019, 294(6):1816-1830. [14] MOHAMMADYANI D, YANAMALA N, SAMHAN-ARIAS A K, et al. Structural characterization of cardiolipin-driven activation of cytochrome c into a peroxidase and membrane perturbation[J]. BBA-Biomembranes, 2018, 1860(5):1057-1068. [15] AMACHER J F, ZHONG F, LISI G P, et al. A compact structure of cytochrome c trapped in a lysine-ligated state:loop refolding and functional implications of a conformational switch[J]. J Am Chem Soc, 2015, 137(26):8435-8449. [16] HANSKE J, TOFFEY J R, MORENZ A M, et al. Conformational properties of cardiolipin-bound cytochrome c[J]. Proc Natl Acad Sci USA, 2012, 109(1):125-130. [17] KOBAYASHI H, NAGAO S, HIROTA S. Characterization of the cytochrome c membrane-binding site using cardiolipin-containing bicelles with NMR[J]. Angew Chem Int Ed Engl, 2016, 55(45):14019-14022. [18] QI H, JIANG Y, YIN Z Y, et al. Optimal pathways for the assembly of the Apaf-1.cytochrome c complex into apoptosome[J]. Phys Chem Chem Phys, 2018, 20(3):1964-1973. [19] JIN J P. Protein structure, function, and regulation in biological movement[J]. Arch Biochem Biophys, 2006, 456(2):99-101. [20] KAY L E. NMR studies of protein structure and dynamics-a look backwards and forwards[J]. J Magn Reson, 2011, 213(2):492-494. [21] LI H, KAMATARI Y O, KITAHARA R, et al. High-pressure nmr for studying protein structure and dynamics[J]. Chinese J Magn Reson, 2016, 33(1):1-26. 李华, KAMATARI Y O, KITAHARA R, 等. 高压NMR在蛋白质结构和动力学研究中的应用[J]. 波谱学杂志, 2016, 33(1):1-26. [22] RAN M L, QIN L Y, TANG C, et al. Regulation of inter-protein interactions between ubiquitin and ubiquitin-associated domains in Rad23A/ubiquilin-1 by phosphorylation[J]. Chinese J Magn Reson, 2019, 36(1):15-22. 冉梦琳, 覃凌云, 唐淳, 等. 磷酸化调控泛素单体与Rad23A/Ubiquilin-1中泛素结合域互作的检测[J]. 波谱学杂志, 2019, 36(1):15-22. [23] MORAR A S, KAKOURAS D, YOUNG G B, et al. Expression of N-15-labeled eukaryotic cytochrome c in Escherichia coli[J]. J Biol Inorg Chem, 1999, 4(2):220-222. [24] ARBOGAST L W, DELAGLIO F, TOLMAN J R, et al. Selective suppression of excipient signals in 2D H-1-C-13 methyl spectra of biopharmaceutical products[J]. J Biomol NMR, 2018, 72(3/4):149-161. [25] LAN W X, WANG Z H, YANG Z Z, et al. Conformational toggling of yeast iso-1-cytochrome c in the oxidized and reduced states[J]. Plos One, 2011, 6(11). [26] SZABO C M, SANDERS L K, LE H C, et al. Expression of doubly labeled Saccharomyces cerevisiae iso-1 ferricytochrome c and H-1,C-13 and N-15 chemical shift assignments by multidimensional NMR[J]. Febs Letters, 2000, 482(1/2):25-30. [27] POLLOCK W B R, ROSELL F I, TWITCHETT M B, et al. Bacterial expression of a mitochondrial cytochrome c. Trimethylation of Lys72 in yeast iso-1-cytochrome c and the alkaline conformational transition[J]. Biochem, 1998, 37(17):6124-6131. [28] DELAGLIO F, GRZESIEK S, VUISTER G W, et al. NMR pipe-A multidimensional spectral processing system based on unix pipes[J]. J Biomol NMR, 1995, 6(3):277-293. [29] LETT C M, ROSU-MYLES M D, FREY H E, et al. Rational design of a more stable yeast iso-1-cytochrome c[J]. BBA-Protein Struct M, 1999, 1432(1):40-48. [30] SUN P, WANG Q W, YUAN B, et al. Monitoring alkaline transitions of yeast iso-1 cytochrome c at natural isotopic abundance using trimethyllysine as a native NMR probe[J]. Chem Comm, 2018, 54(89):12630-12633. |