[1] MUGGLI D S, ODLAND M J, SCHMIDT L R. Effect of trichloroethylene on the photocatalytic oxidation of methanol on TiO2[J]. J Catal, 2001, 203(1):51-63. [2] PALMISANO G, AUGUGLIARO V, PAGLIARO M, et al. Photocatalysis:A promising route for 21st century organic chemistry[J]. Chem Commun, 2007, 38(33):3425-3437. [3] WASMUS S, KUVER A. Methanol oxidation and direct methanol fuel cells:A selective review[J]. J Electroanal Chem, 1999, 461(1/2):14-31. [4] KIM S, CHOI W. Dual photocatalytic pathways of trichloroacetate degradation on TiO2:Effects of nanosized platinum deposits on kinetics and mechanism[J]. J Phys Chem B, 2002, 106(51):13311-13317. [5] MORAND R, LOPEZ C, Koudelkahep M, et al. Photoelectrochemical behavior in low-conductivity media of nanostructured TiO2 films deposited on interdigitated microelectrode arrays[J]. J Phys Chem, 2002, b106(29):7218-7224. [6] XU C B, YANG W S, GUO Q, et al. Photoinduced decomposition of formaldehyde on a TiO2(110) surface, assisted by bridge-bonded oxygen atoms[J]. J Phys Chem Lett, 2013, 4(16):2668-2673. [7] WANG T J, HAO Q Q, WANG Z Q, et al. Deuterium kinetic isotope effect in the photocatalyzed dissociation of methanol on TiO2(110)[J]. J Phys Chem C, 2018, 122(46):26512-26518. [8] XU C B, WANG R M, XO F, et al. Enhanced hydrogen production from methanol photolysis on a formate-modified rutile-TiO2(110) surface[J]. J Phys Chem C, 2018, 122(25):13774-13781. [9] SETVIN M, SHI X, HULVA J, et al. Methanol on anatase TiO2(101):Mechanistic insights into photocatalysis[J]. ACS Catal, 2017, 7(10):7081-7091. [10] TILOCCA A, SELLONI A. Methanol adsorption and reactivity on clean and hydroxylated anatase (101) surfaces[J]. J Phys Chem B, 2004, 108(50):19314-19319. [11] XU C B, YANG W S, GUO Q, et al. Molecular hydrogen formation from photocatalysis of methanol on anatase-TiO2(101)[J]. J Am Chem Soc, 2014, 136(2):602-605. [12] BENNETT D A, CARGNELLO M, GORDON T R, et al. Thermal and photochemical reactions of methanol on nanocrystalline anatase TiO2 thin films[J]. Phys Chem Chem Phys, 2015, 17(26):17190-17201. [13] SETVIN M, ASCHAUER U, SCHEIBER P, et al. Reaction of O2 with subsurface oxygen vacancies on TiO2 anatase (101)[J]. Science, 2013, 341(6149):988-991. [14] HE Y B, DULUB O, CHENG H Z, et al. Evidence for the predominance of subsurface defects on reduced anatase TiO2(101)[J]. Phys Rev Lett, 2009, 102(10):106105. [15] WANG C Y, GROENZIN H, SHULTZ M J. Surface characterization of nanoscale TiO2 film by sum frequency generation using methanol as a molecular probe[J]. J Phys Chem B, 2004, 108(1):265-272. [16] HENDERSON M A, OTERO-TAPIA S, CASTRO M E, et al. The chemistry of methanol on the TiO2(110) surface:the influence of vacancies and coadsorbed species[J]. Faraday Discuss, 1999, 114(2):399-405. [17] BATES S, GILLAN M, KRESSE G. Adsorption of methanol on TiO2(110):A first-principles investigation[J]. J Phys Chem B, 1998, 102(11):2017-2026. [18] LIU W Q, SONG Y H, WANG X L, et al. The mechanism study of photocatalytic methanol reforming by operando nuclear magnetic resonance spectroscopy[J]. Chinese J Magn Reson, 2019, 36(3):298-308. 刘文卿, 宋艳红, 王雪璐, 等. 光催化甲醇重整机理的原位核磁共振研究[J]. 波谱学杂志, 2019, 36(3):298-308. [19] MURAKAMI N, MAHANEY O O P, TORIMOTO T, et al. Photoacoustic spectroscopic analysis of photoinduced change in absorption of titanium(IV) oxide photocatalyst powders:A novel f..easible technique for measurement of defect density[J]. Chem Phys Lett, 2006, 426(1-3):204-208. [20] HERMAN G S, DOHNÁLEK Z, RUZYCKI N, et al. Experimental investigation of the interaction of water and methanol with anatase-TiO2(101)[J]. Hist Eur Ideas, 2003, 21(107):s169-176. [21] WANG C Y, GROENZIN H, SHULTZ M J. Comparative study of acetic acid, methanol, and water adsorbed on anatase TiO2 probed by sum frequency generation Spectroscopy[J]. J Am Chem Soc, 2005, 127(27):9736-9744. [22] LANG X F, LIANG Y H, SUN L L, et al. Interplay between methanol and anatase TiO2(101) surface:The effect of subsurface oxygen vacancy[J]. J Phys Chem C, 2017, 121(11):6072-6080. [23] TAO F F, CROZIER P A. Atomic-scale observations of catalyst structures under reaction conditions and during catalysis[J]. Chem Rev, 2016, 47(19):3487-3539. [24] XING J, CHEN J F, LI Y H, et al. Stable isolated metal atoms as active sites for photocatalytic hydrogen evolution[J]. Eur J Chem, 2014, 20(8):2088-2088. [25] WANG X L, LIU W, YU Y Y, et al. Operando NMR spectroscopic analysis of proton transfer in heterogeneous photocatalytic reactions[J]. Nat Commun, 2016, 7:11918. [26] SONG Y H, LIU W Q, YAO Y F. Gaining Higher NMR signal enhancement with parahydrogen-induced polarization[J]. Chinese J Magn Reson, 2015, 32(3):470-480. 宋艳红, 刘文卿, 姚叶锋. 仲氢诱导极化增强的核磁共振实验条件优化[J]. 波谱学杂志, 2015, 32(3):470-480. [27] MELVIN A A, ILLATH K, DAS T, et al. M-Au/TiO2(M=Ag, Pd, and Pt) nanophotocatalyst for overall solar water splitting:role of interfaces[J]. Nanoscale, 2015, 7:13477-13488. [28] YIN Z, WANG Y, SONG C Q, et al. Hybrid Au-Ag nanostructures for enhanced plasmon-driven catalytic selective hydrogenation through visible light irradiation and surface-enhanced Raman scattering[J]. J Am Chem Soc, 2018, 140(3):864-867. |