[1] SCHILD H G. Poly(N-isopropylacrylamide):experiment, theory and application[J]. Prog Polym Sci, 1992, 17(2):163-249. [2] SCHILD H G, MUTHUKUMAR M, TIRRELL D A. Cononsolvency in mixed aqueous solutions of poly(N-isopropylacrylamide)[J]. Macromolecules, 1991, 24(4):948-952. [3] COSTA R O R, FREITAS R F S. Phase behavior of poly(N-isopropylacrylamide) in binary aqueous solutions[J]. Polymer, 2002, 43(22):5879-5885. [4] WANG N, RU G Y, WANG L Y, et al. 1H MAS NMR studies of the phase separation of poly(N-isopropylacrylamide) gel in binary solvents[J]. Langmuir, 2009, 25(10):5898-5902. [5] LIU B L, WANG J, RU G Y, et al. Phase transition and preferential alcohol adsorption of poly(N, N-diethylacrylamide) gel in water/alcohol mixtures[J]. Macromolecules, 2015, 48(4):1126-1133. [6] WANG J, LIU B L, RU G Y, et al. Effect of urea on phase transition of poly(N-isopropylacrylamide) and poly(N, N-diethylacrylamide) hydrogels:a clue for urea-induced denaturation[J]. Macromolecules, 2016, 49(1):234-243. [7] WANG J, WANG N, LIU B L, et al. Preferential adsorption of the additive is not a prerequisite for cononsolvency in water-rich mixtures[J]. Phys Chem Chem Phys, 2017, 19(44):30097-30106. [8] GAN D J, LYON L A. Tunable swelling kinetics in core-shell hydrogel nanoparticles[J]. J Am Chem Soc, 2001, 123(31):7511-7517. [9] WANG D, WU T, WAN X J, et al. Purely salt-responsive micelle formation and inversion based on a novel schizophrenic sulfobetaine block copolymer: structure and kinetics of micellization[J]. Langmuir, 2007, 23(23):11866-11874. [10] HUANG C J, CHANG F C. Polypeptide diblock copolymers:syntheses and properties of poly(N-isopropylacrylamide)-b-polylysine[J]. Macromolecules, 2008, 41(19):7041-7052. [11] WEI H, CHENG S X, ZHANG X Z, et al. Thermo-sensitive polymeric micelles based on poly(N-isopropylacrylamide) as drug carriers[J]. Prog Polym Sci, 2009, 34(9):893-910. [12] RöSLER A, VANDERMEULEN G W M, KLOK H A. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers[J]. Adv Drug Deliv Rev, 2001, 53(1):95-108. [13] WANG S, ZHANG Z F, ZHANG Q H, et al. Physical crosslinked poly(N-isopropylacrylamide)/nano-hydroxyapatite thermosensitive composite hydrogels[J]. J Inorg Organomet P, 2018, 28(5):2069-2079. [14] CHEN Y, ZHOU Y Y, LIU W Y, et al. POSS hybrid robust biomass ipn hydrogels with temperature responsiveness[J]. Polymers, 2019, 11(3):524. [15] KANTO R, QIAO Y H, MASUKO K, et al. Synthesis, assembled structures, and DNA complexation of thermoresponsive lysine-based zwitterionic and cationic block copolymers[J]. Langmuir, 2019, 35(13):4646-4659. [16] LU Y, ZHENG X W, ZHONG K. Research progresses in development of thermo-sensitive mri contrast agent[J]. Chinese J Magn Reson, 2017, 34(4):528-536. 路遥, 郑新威, 钟凯. 温敏性磁共振成像造影剂的研究进展[J]. 波谱学杂志, 2017, 34(4):528-536. [17] GAN D J, LYON L A. Fluorescence nonradiative energy transfer analysis of crosslinker heterogeneity in core-shell hydrogel nanoparticles[J]. Anal Chim Acta, 2003, 496(1):53-63. [18] JOCHUM F D, THEATO P. Thermo- and light responsive micellation of azobenzene containing block copolymers[J]. Chem Commun, 2010, 46(36):6717-6719. [19] QIN S, GENG Y, DISCHER D E, et al. Temperature-controlled assembly and release from polymer vesicles of poly(ethylene oxide)-block-poly(N-isopropylacrylamide)[J]. Adv Mater, 2006, 18(21):2905-2909. [20] SERPE M J, JONES C D, LYON L A. Layer-by-layer deposition of thermoresponsive microgel thin films[J]. Langmuir, 2003, 19(21):8759-8764. [21] GE Z Z, LUO S Z, LIU S Y. Syntheses and self-assembly of poly(benzyl ether)-b-poly(N-isopropylacrylamide) dendritic-linear diblock copolymers[J]. J Polym Sci Pol Chem, 2006, 44(4):1357-1371. [22] NYKäNEN A, NUOPPONEN M, LAUKKANEN A, et al. Phase behavior and temperature-responsive molecular filters based on self-assembly of polystyrene-block-poly(N-isopropylacrylamide)-block-polystyrene[J]. Macromolecules, 2007, 40(16):5827-5834. [23] PRAMANIK P, GHOSH S. Thermoresponsive polymersome from a double hydrophilic block copolymer[J]. J Polym Sci Pol Chem, 2015, 53(21):2444-2451. [24] LIU B L, WANG J, ZHANG Y, et al. Inhomogeneous-collapse driven micelle-vesicle transition of amphiphilic block copolymers[J]. Soft Matter, 2017, 13(39):7106-7111. [25] FENG A C, ZHAN C B, YAN Q, et al. A CO2- and temperature-switchable "schizophrenic" block copolymer:from vesicles to micelles[J]. Chem Commun, 2014, 50(64):8958-8961. [26] YAN Q, ZHAO Y. CO2-stimulated diversiform deformations of polymer assemblies[J]. J Am Chem Soc, 2013, 135(44):16300-16303. [27] WARREN N J, ARMES S P. Polymerization-induced self-assembly of block copolymer nano-objects via RAFT aqueous dispersion polymerization[J]. J Am Chem Soc, 2014, 136(29):10174-10185. [28] ZHOU W, QU Q W, XU Y Y, et al. Aqueous polymerization-induced self-assembly for the synthesis of ketone-functionalized nano-objects with low polydispersity[J]. ACS Macro Lett, 2015, 4(5):495-499. [29] MABLE C J, FIELDING L A, DERRY M J, et al. Synthesis and pH-responsive dissociation of framboidal ABC triblock copolymer vesicles in aqueous solution[J]. Chem Sci, 2018, 9(6):1454-1463. [30] WANG N, RU G Y, WANG L Y, et al. NMR studies on phase separation of linear PNIPAM and gel in binary solvents[J]. Chinese J Magn Reson, 2010, 27(3):461-469. 王念, 茹阁英, 王立英, 等. PNIPAM线性链与凝胶在二元溶剂中相变的变温NMR研究[J]. 波谱学杂志, 2010, 27(3):461-469. [31] 王念. 二元溶剂中聚(N-异丙基丙烯酰胺)相变的NMR研究[D]. 武汉:中国科学院武汉物理与数学研究所, 2009. |