[1] TERRENO E, CASTELLI D D, VIATE A, et al. Challenges for molecular magnetic resonance imaging[J]. Chem Rev, 2010, 110(5):3019-3042. [2] GAO D L, SUN P, ZHANG X, et al. Interactions between albumin and fatty acids studied by NMR spectroscopy[J]. Chinese J Magn Reson, 2018, 35(3):338-344. 高东莉, 孙鹏, 张许, 等. 运用NMR研究白蛋白与脂肪酸的相互作用[J]. 波谱学杂志, 2018, 35(3):338-344. [3] PALANIAPPAN K K, FRANCIS M B, PINES A, et al. Molecular sensing using hyperpolarized xenon NMR spectroscopy[J]. Israel J Chem, 2014, 54(1/2):104-112. [4] WALKER T, HAPPER W. Spin-exchange optical pumping of noble-gas nuclei[J]. Rev Mod Phys, 1997, 69(2):629-642. [5] ZHOU X, SUN X P, LUO J, et al. Production of hyperpolarized Xe-129 gas without nitrogen by optical pumping at Cs-133 D-2 line in flow system[J]. Chin Phys Lett, 2004, 21(8):1501-1503. [6] ZHOU X, GRAZIANI D, PINES A. Hyperpolarized xenon NMR and MRI signal amplification by gas extraction[J]. Proc Natl Acad Sci U S A, 2009, 106(40):16903-16906. [7] ZHAO X C, SUN X P, ZHOU X, et al. Measuring polarization of hyperpolarized xenon-129 gas with low-field NMR[J]. Chinese J Magn Reson, 2016, 33(3):458-467. 赵修超, 孙献平, 周欣, 等. 超极化气体氙-129的低场NMR测量[J]. 波谱学杂志, 2016, 33(3):458-467. [8] SCHLUNDT A, KILIAN W, BEYERMANN M, et al. A xenon-129 biosensor for monitoring MHC-peptide interactions[J]. Angew Chem Int Ed, 2009, 48(23):4142-4145. [9] BOUTIN C, STOPIN A, LENDA F, et al. Cell uptake of a biosensor detected by hyperpolarized Xe-129 NMR:The transferrin case[J]. Bioorg Med Chem, 2011, 19(13):4135-4143. [10] KOTERA N, DUBOST E, MILANOLE G, et al. A doubly responsive probe for the detection of Cys4-tagged proteins[J]. Chem Commun, 2015, 51(57):11482-11484. [11] WEI Q, SEWARD G K, HILL P A, et al. Designing Xe-129 NMR biosensors for matrix metalloproteinase detection[J]. J Am Chem Soc, 2006, 128(40):13274-13283. [12] CHAMBERS J M, HILL P A, AARON J A, et al. Cryptophane xenon-129 nuclear magnetic resonance biosensors targeting human carbonic anhydrase[J]. J Am Chem Soc, 2009, 131(2):563-569. [13] ROY V, BROTIN T, DUTASTA J P, et al. A cryptophane biosensor for the detection of specific nucleotide targets through xenon NMR spectroscopy[J]. Chemphyschem, 2007, 8(14):2082-2085. [14] KHAN N S, RIGGLE B A, SEWARD G K, et al. Cryptophane-folate biosensor for Xe-129 NMR[J]. Bioconjugate Chem, 2015, 26(1):101-109. [15] PALANIAPPAN K K, RAMIREZ R M, BAJAJ V S, et al. Molecular imaging of cancer cells using a bacteriophage-based 129Xe NMR biosensor[J]. Angew Chem Int Ed, 2013, 52(18):4849-4853. [16] ROSSELLA F, ROSE H M, WITTE C, et al. Design and characterization of two bifunctional cryptophane A-based host molecules for xenon magnetic resonance imaging applications[J]. Chempluschem, 2014, 79(10):1463-1471. [17] WITTE C, MARTOS V, ROSE H M, et al. Live-cell MRI with xenon Hyper-CEST biosensors targeted to metabolically labeled cell-surface glycans[J]. Angew Chem Int Ed, 2015, 54(9):2806-2810. [18] ROSE H M, WITTE C, ROSSELLAA F, et al. Development of an antibody-based, modular biosensor for Xe-129 NMR molecular imaging of cells at nanomolar concentrations[J]. Proc Natl Acad Sci U S A, 2014, 111(32):11697-11702. [19] YANG S J, JIANG W P, REN L L, et al. Biothiol xenon MRI sensor based on thiol-addition reaction[J]. Anal Chem, 2016, 88(11):5835-5840. [20] BERTHAULT P, DESVAUX H, WENDLINGER T, et al. Effect of pH and counterions on the encapsulation properties of xenon in water-soluble cryptophanes[J]. Chem Eur J, 2010, 16(43):12941-12946. [21] RIGGLE B A, WANG Y, DMOCHOWSKI I J. A "smart" Xe-129 NMR biosensor for pH-dependent cell labeling[J]. J Am Chem Soc, 2015, 137(16):5542-5548. [22] KOTERA N, TASSALI N, LEONCE E, et al. A sensitive zinc-activated 129Xe MRI probe[J]. Angew Chem Int Ed, 2012, 51(17):4100-4103. [23] TASSALI N, KOTERA N, BOUTIN C, et al. Smart detection of toxic metal ions, Pb2+ and Cd2+, using a Xe-129 NMR-based sensor[J]. Anal Chem, 2014, 86(3):1783-1788. [24] ZHANG J, JIANG W P, LUO Q, et al. Rational design of hyperpolarized xenon NMR molecular sensor for the selective and sensitive determination of zinc ions[J]. Talanta, 2014, 122:101-105. [25] GUO Q N, ZENG Q B, JIANG W P, et al. A molecular imaging approach to mercury sensing based on hyperpolarized Xe-129 molecular clamp probe[J]. Chem Eur J, 2016, 22(12):3967-3970. [26] WANG Y F, DMOCHOWSKI I J. An expanded palette of xenon-129 NMR biosensors[J]. Acc Chem Res, 2016, 49(10):2179-2187. [27] KUNTH M, WITTE C, HENNIG A, et al. Identification, classification, and signal amplification capabilities of high-turnover gas binding hosts in ultra-sensitive NMR[J]. Chem Sci, 2015, 6(11):6069-6075. [28] JON S Y, SELVAPALAM N, OH D H, et al. Facile synthesis of cucurbit[n]uril derivatives via direct functionalization:expanding utilization of cucurbit[n]uril[J]. J Am Chem Soc, 2003, 125(34):10186-10187. [29] KIM K, SELVAPALAM N, KO Y H, et al. Functionalized cucurbiturils and their applications[J]. Chem Soc Rev, 2007, 36(2):267-279. [30] LEE H K, PARK K M, JEON Y J, et al. Vesicle formed by amphiphilc cucurbit [6]uril:versatile, noncovalent modification of the vesicle surface, and multivalent binding of sugar-decorated vesicles to lectin[J]. J Am Chem Soc, 2005, 127(14):5006-5007. [31] KIM D, KIM E, KIM J, et al. Direct synthesis of polymer nanocapsules with a noncovalently tailorable surface[J]. Angew Chem Int Ed, 2007, 46(19):3471-3474. [32] KIM D, KIM E, LEE J, et al. Direct synthesis of polymer nanocapsules:self-assembly of polymer hollow spheres through irreversible covalent bond formation[J]. J Am Chem Soc, 2010, 132(28):9908-9919. [33] YUN G, HASSAN Z, LEE J, et al. Highly stable, water-dispersible metal-nanoparticle-decorated polymer nanocapsules and their catalytic applications[J]. Angew Chem Int Ed, 2014, 53(25):6414-6418. [34] PARK K M, SUH K, JUNG H, et al. Cucurbituril-based nanoparticles:a new efficient vehicle for targeted intracellular delivery of hydrophobic drugs[J]. Chem Commun, 2009(1):71-73. [35] AYHAN M M, KAROUI H, HARDY M, et al. Comprehensive synthesis of monohydroxy-cucurbit[n]urils (n=5,6,7,8):high purity and high conversions[J]. J Am Chem Soc, 2015, 137(32):10238-10245. [36] STEVENS T K, RAMIREZ R M, PINES A. Nanoemulsion contrast agents with sub-picomolar sensitivity for xenon NMR[J]. J Am Chem Soc, 2013, 135(26):9576-9579. |