[1] KOMANDER D, RAPE M. The ubiquitin code[J]. Annu Rev Biochem, 2012, 81:203-229. [2] DIKIC I, WAKATSUKI S, WALTERS K J. Ubiquitin-binding domains-from structures to functions[J]. Nat Rev Mol Cell Biol, 2009, 10(10):659-671. [3] FOROUD T, UNIACKE S K, LIU L, et al. Heterozygosity for a mutation in the parkin gene leads to later onset Parkinson disease[J]. Neurology, 2003, 60(5):796-801. [4] DENG H X, CHEN W, HONG S T, et al. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia[J]. Nature, 2011, 477(7363):211-215. [5] EL AYADI A, STIEREN E S, BARRAL J M, et al. Ubiquilin-1 regulates amyloid precursor protein maturation and degradation by stimulating K63-linked polyubiquitination of lysine 688[J]. Proc Natl Acad Sci U S A, 2012, 109(33):13416-13421. [6] ZHANG D N, RAASI S, FUSHMAN D. Affinity makes the difference:nonselective interaction of the UBA domain of Ubiquilin-1 with monomeric ubiquitin and polyubiquitin chains[J]. J Mol Biol, 2008, 377(1):162-180. [7] HANAOKA E, OZAKI T, OHIRA M, et al. Molecular cloning and expression analysis of the human DA41 gene and its mapping to chromosome 9q21.2-q21.3[J]. J Hum Genet, 2000, 45(3):188-191. [8] WITHERS-WARD E S, MUELLER T D, CHEN I S, et al. Biochemical and structural analysis of the interaction between the UBA(2) domain of the DNA repair protein HHR23A and HIV-1 Vpr[J]. Biochemistry, 2000, 39(46):14103-14112. [9] HEESSEN S, MASUCCI M G, DANTUMA N P. The UBA2 domain functions as an intrinsic stabilization signal that protects Rad23 from proteasomal degradation[J]. Mol Cell, 2005, 18(2):225-235. [10] KOYANO F, OKATSU K, KOSAKO H, et al. Ubiquitin is phosphorylated by PINK1 to activate parkin[J]. Nature, 2014, 510(7503):162-166. [11] LEE H J, NA K, KWON M S, et al. Quantitative analysis of phosphopeptides in search of the disease biomarker from the hepatocellular carcinoma specimen[J]. Proteomics, 2009, 9(12):3395-3408. [12] ZHOU H J, DI PALMA S, PREISINGER C, et al. Toward a comprehensive characterization of a human cancer cell phosphoproteome[J]. J Proteome Res, 2013, 12(1):260-271. [13] SCHWEPPE D K, RIGAS J R, GERBER S A. Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors[J]. J Proteomics, 2013, 91:286-296. [14] TSAI C F, WANG Y T, YEN H Y, et al. Large-scale determination of absolute phosphorylation stoichiometries in human cells by motif-targeting quantitative proteomics[J]. Nat Commun, 2015, 6:6622. [15] WAUER T, SWATEK K N, WAGSTAFF J L, et al. Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis[J]. EMBO J, 2015, 34(3):307-325. [16] DONG X, GONG Z, LU Y B, et al. Ubiquitin S65 phosphorylation engenders a pH-sensitive conformational switch[J]. Proc Natl Acad Sci U S A, 2017, 114(26):6770-6775. [17] SWATEK K N, KOMANDER D. Ubiquitin modifications[J]. Cell Res, 2016, 26(4):399-422. [18] SWANEY D L, RODRÍGUEZ-MIAS R A, VILLÉN J. Phosphorylation of ubiquitin at Ser65 affects its polymerization, targets, and proteome-wide turnover[J]. EMBO Rep, 2015, 16(9):1131-1144. [19] ZHANG N X, WU J, ZHANG H Q, et al. Protein-protein interactions studied by NMR-A review using the ubiquitin-proteasome[J]. Chinese J Magn Reson, 2012, 29(2):182-189. 张乃霞, 吴娟, 张华群, 等. NMR技术在蛋白质-蛋白质相互作用研究中的应用-泛素-蛋白水解酶体通路研究实例介绍[J]. 波谱学杂志, 2012, 29(2):182-189. [20] ZHANG D, RAASI S, FUSHMAN D. Affinity makes the difference:nonselective interaction of the UBA domain of Ubiquilin-1 with monomeric ubiquitin and polyubiquitin chains[J]. J Mol Biol, 2008, 377(1):162-180. [21] LI S L, ZHU Q J, LIU M L, et al. Characteristics of protein NMR resonances and chemical shift assignments[J]. Chinese J Magn Reson, 2017, 34(2):137-147. 李双利, 朱勤俊, 刘买利, 等. 蛋白质分子核磁共振谱峰的特性及其化学位移归属[J]. 波谱学杂志, 2017, 34(2):137-147. |