[1] HERRMANN K M. The shikimate pathway:early steps in the biosynthesis of aromatic-compounds[J]. Plant Cell, 1995, 7(7):907-919.
[2] MAEDA H, DUDAREVA N. Annual review of plant biology[M]. Palo Alto:Annual Reviews, 2012.
[3] DAI H, XIAO C N, LIU H B, et al. Combined NMR and LC-DAD-MS analysis reveals comprehensive metabonomic variations for three phenotypic cultivars of Salvia miltiorrhiza bunge[J]. J Proteome Res, 2010, 9(3):1565-1578.
[4] DAI H, XIAO C N, LIU H B, et al. Combined NMR and LC-MS analysis reveals the metabonomic changes in Salvia miltiorrhiza bunge induced by water depletion[J]. J Proteome Res, 2010, 9(3):1460-1475.
[5] WANG Y L, TANG H R, NICHOLSON J K, et al. A metabonomic strategy for the detection of the metabolic effects of chamomile (Matricaria recutita L.) ingestion[J]. J Agric Food Chem, 2005, 53(2):191-196.
[6] SHI X H, XIAO C N, WANG Y L, et al. Gallic acid intake induces alterations to systems metabolism in rats[J]. J Proteome Res, 2013, 12(2):991-1006.
[7] NICHOLSON J K, HOLMES E, WILSON I D. Gut microorganisms, mammalian metabolism and personalized health care[J]. Nat Rev Microbiol, 2005, 3(5):431-438.
[8] CHEN C, TANG H R, SUTCLIFFE L H, et al. Green tea polyphenols react with 1,1-diphenyl-2-picrylhydrazyl free radicals in the bilayer of liposomes:Direct evidence from electron spin resonance studies[J]. J Agric Food Chem, 2000, 48(11):5710-5714.
[9] LU Z B, NIE G J, BELTON P S, et al. Structure-activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives[J]. Neurochem Int, 2006, 48(4):263-274.
[10] MIR R, JALLU S, SINGH T P. The shikimate pathway:Review of amino acid sequence, function and three-dimensional structures of the enzymes[J]. Crit Rev Microbiol, 2015, 41(2):172-189.
[11] WEAVER L M, HERRMANN K M. Dynamics of the shikimate pathway in plants[J]. Trends Plant Sci, 1997, 2(9):346-351.
[12] WILSON D J, PATTON S, FLOROVA G, et al. The shikimic acid pathway and polyketide biosynthesis[J]. J Ind Microbiol Biotechnol, 1998, 20(5):299-303.
[13] NIGOVIC B, ANTOLIC S, KOJIC-PRODIC B, et al. Correlation of structural and physico-chemical parameters with the bioactivity of alkylated derivatives of indole-3-acetic acid, a phytohormone (auxin)[J]. Acta Crystallogr, 2000, 56(1):94-111.
[14] SCHUTZ A, GOLBIK R, KONIG S, et al. Intermediates and transition states in thiamin diphosphate-dependent decarboxylases. A kinetic and NMR study on wild-type indolepyruvate decarboxylase and variants using indolepyruvate, benzoylformate, and pyruvate as substrates[J]. Biochemistry 2005, 44(16):6164-6179.
[15] TIAN Y, ZHANG L M, WANG Y L, et al. Age-related topographical metabolic signatures for the rat gastrointestinal contents[J]. J Proteome Res, 2012, 11(2):1397-1411.
[16] ZHAO Y, WU J F, LI J V, et al. Gut microbiota composition modifies fecal metabolic profiles in mice[J]. J Proteome Res, 2013, 12(6):2987-2999.
[17] LIN H, AN Y P, HAO F H, et al. Correlations of fecal metabonomic and microbiomic changes induced by high-fat diet in the pre-obesity state[J]. Sci Rep, doi:10.1038/srep21618.
[18] WU X Y, LI N, LI H D, et al. An optimized method for NMR-based plant seed metabolomic analysis with maximized polar metabolite extraction efficiency, signal-to-noise ratio, and chemical shift consistency[J]. Analyst, 2014, 139(7):1769-1778.
[19] WU X Y, LI N, TANG H R. Quantitative analysis of metabolites in Mungbean (Vigna Radiata) extracts using NMR techniques[J]. Chinese J Magn Reson, 2014, 31(4):548-563. 吴香玉, 李宁, 唐惠儒. 绿豆(Vigna Radiata)代谢物组成的核磁共振定量分析[J]. 波谱学杂志, 2014, 31(4):548-563.
[20] KAWAI S, NAKATA K, ICHIZAWA H, et al. 3-(4-Hydroxyphenyl)propionic acid is involved in the biosynthesis of myricanol in Myrica rubra[J]. J Wood Sci, 2010, 56(2):148-153.
[21] BAI N S, HE K, ROLLER M, et al. Flavonolignans and other constituents from lepidium meyenii with activities in anti-inflammation and human cancer cell lines[J]. J Agric Food Chem, 2015, 63(9):2458-2463.
[22] ZHANG J T, ZHANG Y, DU Y Y, et al. Dynamic metabonomic responses of tobacco (Nicotiana tabacum) plants to salt stress[J]. J Proteome Res, 2011, 10(4):1904-1914.
[23] LIU C X, HAO F H, HU J, et al. Revealing different systems responses to brown planthopper infestation for pest susceptible and resistant rice plants with the combined metabonomic and gene-expression analysis[J]. J Proteome Res, 2010, 9(12):6774-6785.
[24] CAPITANI D, SOBOLEV A P, TOMASSINI A, et al. Peach fruit:Metabolic comparative analysis of two varieties with different resistances toinsect attacks by NMR spectroscopy[J]. J Agric Food Chem, 2013, 61(8):1718-1726.
[25] HUANG Y, SHAO H K, LI K, et al. Chemical analysis and activity evaluation of anti-inflammatory constituents of Fi-cus microcarpa L. f.[J]. Chinese Traditional Patent Medicine, 2014, 36:1227-1233.黄洋, 邵慧凯, 李康, 等. 小叶榕叶抗炎成分分析及活性评价[J]. 中成药, 2014, 36:1227-1233.
[26] FORINO M, TARTAGLIONE L, DELL'AVERSANO C, et al. NMR-based identification of the phenolic profile of fruits of Lycium barbarum (goji berries). Isolation and structural determination of a novel N-feruloyl tyramine dimer as the most abundant antioxidant polyphenol of goji berries[J]. Food Chem, 2016, 194:1254-1259.
[27] SCOTT K N. NMR parameters of biologically important aromatic acids. 2.phenylacetic acid and derivatives[J]. J Magn Reson, 1972, 6(1):55-73.
[28] SWISLOCKA R, PIEKUT J, LEWANDOWSKI W. The relationship between molecular structure and biological activity of alkali metal salts of vanillic acid:spectroscopic, theoretical and microbiological studies[J]. Spectroc Acta A-Mol Biomol Spectrosc, 2013, 100:31-40.
[29] WALKER T S, BAIS H P, HALLIGAN K M, et al. Metabolic profiling of root exudates of arabidopsis thaliana[J]. J Agric Food Chem, 2009, 57(19):9346-9346.
[30] GOTTLIEB H E, KUMAR S, SAHAI M, et al. Ethyl brevifolin carboxylate from Flueggea microcarpa[J]. Phytochemistry, 1991, 30(7):2435-2438.
[31] VINOD K S, PERIANDY S, GOVINDARAJAN M. Spectroscopic analysis of cinnamic acid using quantum chemical calculations[J]. Spectroc Acta A-Mol Biomol Spectrose, 2015, 136:808-817.
[32] KINROSS J M, ALKHAMESI N, BARTON R H, et al. Global metabolic phenotyping in an experimental laparotomy model of surgical trauma[J]. J Proteome Res, 2011, 10(1):277-287.
[33] CAI R, ARNTFIELD S D,CHARLTON J L. Structural changes of sinapic acid and sinapine bisulfate during autoclaving with respect to the development of colored substances[J]. J Am Oil Chem Soc, 1999, 76(4):433-441.
[34] AMIN R P, KUNAPARAJU N, KUMAR S, et al. Structure elucidation and inhibitory effects on human platelet aggregation of chlorogenic acid from Wrightia tinctoria[J]. J Complemen Integr Med, 2013, 10(1):97-104.
[35] KOLLA J P N, PEDDIKOTLA P, MUVVA V. Biological activity of phenylpropionic acid isolated from a Terrestrial Streptomycetes[J]. 2007, 56(3):191-197.
[36] CONNELLY J C, CONNOR S C, MONTE S, et al. Application of directly coupled high performance liquid chromatography-NMR-mass spectometry and H-1 NMR spectroscopic studies to the investigation of 2,3-benzofuran metabolism in Sprague-Dawley rats[J]. Drug Metab Dispos, 2002, 30(12):1357-1363.
[37] AN Y P, YANG X Y, LI H D, et al. NMR analysis of nicotinamide N-oxide and pseudouridine in rat urine[J]. Chinese J Magn Reson, 2014, 31(2):232-242. 安艳捧, 杨晓艳, 李洪德, 等. 大鼠尿液中N-氧化烟酰胺和伪尿嘧啶核苷的NMR分析[J]. 波谱学杂志, 2014, 31(2):232-242.
[38] TIAN Y, TANG H R. Identification and structural determination of saccharides in rat feces[J]. Chinese J Magn Reson, 2012, 29(3):361-371. 田园, 唐惠儒. 大鼠粪样中几种糖类物质的结构确定[J]. 波谱学杂志, 2012, 29(3):361-371.
[39] YANG X Y, WU X Y, AN Y P, et al. An NMR study on keto-enol tautomerism of indole-3-pyruvic acid[J]. Chinese J Magn Reson, 2014, 31(1):81-90. 杨晓艳, 吴香玉, 安艳捧, 等. 吲哚丙酮酸的酮-烯醇互变异构化的NMR研究[J]. 波谱学杂志, 2014, 31(1):81-90. |