[1] Grant D M, Harris R K. Encyclopedia of Nuclear Magnetic Resonance[M]. Chichester:John Wiley & Sons Ltd., 1996.
[2] Cavanagh J, Fairbrother W J, III A G P, et al. Protein NMR Spectroscopy:Principles and Practice[M]. Second ed. London:Elsevier Academic Press, 2007.
[3] Bollard M E, Stanley E G, Lindon J C, et al. NMR-based metabonomic approaches for evaluating physiological influences on biofluid composition[J]. NMR in Biomedicine, 2005, 18(3):143-162.
[4] Abragam A. The Principle of Nuclear Magnetism[M]. Oxford:Clarendom, 1961.
[5] Cherubini A, Bifone A. Hyperpolarised xenon in biology[J]. Prog Nucl Magn Reson Spectrosc, 2003, 42(1, 2):1-30.
[6] Cheng C Y, Han S I. Dynamic nuclear polarization methods in solids and solutions to explore membrane proteins and membrane systems[J]. Annu Rev Phys Chem, 2013, 64(1):507-532.
[7] Green R A, Adams R W, Duckett S B, et al. The theory and practice of hyperpolarization in magnetic resonance using parahydrogen[J]. Prog Nucl Magn Reson Spectrosc, 2012, 67(1):1-48.
[8] Benn R, Gunther H. Modern pulse methods in high-resolution NMR spectroscopy[J]. Angew Chem Int Edit, 1983, 22(5):350-380.
[9] Xu Y Q, Matthews S. TROSY NMR spectroscopy of large soluble proteins[J]. Top Curr Chem, 2013, 335(2):97-119.
[10] Neuhaus D, Williamson M P. The Nuclear Overhauser Effect in Structural and Conformational Analysis[M], 2nd Ed. Chichester:John Wiley & Sons Ltd., 2000.
[11] Sattler M, Schleucher J, Griesinger C. Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients[J]. Prog Nucl Magn Reson Spectrosc, 1999, 34(2):93-158.
[12] Kovacs H, Moskau D, Spraul M. Cryogenically cooled probes-A leap in NMR technology[J]. Prog Nucl Magn Reson Spectrosc, 2005, 46(2, 3):131-155.
[13] Lindon J C, Ferrige A G. Digitization and data processing in fourier transform NMR[J]. Prog Nucl Magn Reson Spectrosc, 1980, 14(1):27-66.
[14] Ni F, Levy G C, Scheraga H A. Simultaneous resolution enhancement and noise suppression in NMR signal-processing by combined use of maximum-entropy and fourier self-deconvolution methods[J]. J Magn Reson, 1986, 66(2):385-390.
[15] Jiang B, Luo F, Ding Y, et al. NASR:An effective approach for simultaneous noise and artifact suppression in NMR spectroscopy[J]. Anal Chem, 2013, 85(4):2523-2528.
[16] Kazimierczuk K, Stanek J, Zawadzka-Kazimierczuk A, et al. Random sampling in multidimensional NMR spectroscopy[J]. Prog Nucl Magn Reson Spectrosc, 2010, 57(4):420-434.
[17] Good P. Resampling Methods:A Practical Guide to Data Analysis[M]. Boston:Birkhauser, 2006.
[18] Bostock M J, Holland D J, Nietlispach D. Compressed sensing reconstruction of undersampled 3D NOESY spectra:Application to large membrane proteins[J]. J Biomol NMR, 2012, 54(1):15-32.
[19] Donoho D L. Compressed sensing[J]. IEEE Trans Inf Theory, 2006, 52(4):1289-1306.
[20] Candes E J, Romberg J, Tao T. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Trans Inf Theory, 2006, 52(2):489-509.
[21] Lustig M, Donoho D, Pauly J M. Sparse MRI:The application of compressed sensing for rapid MR imaging[J]. Magn Reson Med, 2007, 58(6):1182-1195.
[22] Holland D J, Bostock M J, Gladden L F, et al. Fast multidimensional NMR spectroscopy using compressed sensing[J]. Angew Chem Int Ed Engl, 2011, 50(29):6548-6551.
[23] Kazimierczuk K, Orekhov V Y. Accelerated NMR spectroscopy by using compressed sensing[J]. Angew Chem Int Ed Engl, 2011, 50(24):5556-5559.
[24] Berlekamp E R, Mceliece R J, Vantilborg H C A. Inherent intractability of certain coding problems[J]. IEEE Trans Inf Theory, 1978, 24(3):384-386.
[25] Chen S S B, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit[J]. Siam J Sci Comput, 1998, 20(1):33-61.
[26] Candes E, Romberg J. Sparsity and incoherence in compressive sampling[J]. Inverse Probl, 2007, 23(3):969-985.
[27] Candes E J, Tao T. Decoding by linear programming[J]. IEEE Trans Inf Theory, 2005, 51(12):4203-4215.
[28] Donoho D L. Compressed sensing[J]. IEEE Trans Inf Theory, 2006, 52(4):1289-1306.
[29] Candes E J, Tao T. Near-optimal signal recovery from random projections:Universal encoding strategies?[J]. IEEE Trans Inf Theory, 2006, 52(12):5406-5425.
[30] Donoho D L, Elad M, Temlyakov V N. Stable recovery of sparse overcomplete representations in the presence of noise[J]. IEEE Trans Inf Theory, 2006, 52(1):6-18.
[31] Drori I. Fast l1 minimization by iterative thresholding for multidimensional NMR Spectroscopy[J]. Eurasip J Ad Sig Pr, 2007, 20(1):22-35.
[32] Shrot Y, Frydman L. Compressed sensing and the reconstruction of ultrafast 2D NMR data:Principles and biomolecular applications[J]. J Magn Reson, 2011, 209(2):352-358.
[33] Bodenhausen G, Ruben D J. Natural abundance N-15 NMR by enhanced heteronuclear spectroscopy[J]. Chem Phys Lett, 1980, 69(1):185-189.
[34] Dyson H J, Wright P E. Unfolded proteins and protein folding studied by NMR[J]. Chem Rev, 2004, 104(8):3607-3622.
[35] Shuker S B, Hajduk P J, Meadows R P, et al. Discovering high-affinity ligands for proteins:SAR by NMR[J]. Science, 1996, 274(5292):1531-1534.
[36] Delaglio F, Grzesiek S, Vuister G W, et al. NMR Pipe-A multidimensional spectral processing system based on unix pipes[J]. J Biomol NMR, 1995, 6(3):277-293. |