[1] Frydman L, Harwood J S. Isotropic spectra of half-integer quadrupolar spins from bidimensional magic-angle spinning NMR[J]. J Am Chem Soc, 1995, 117(19): 5 367-5 368.[2] Medek A, Harwood J S, Frydman L. Multiple-quantum magic-angle spinning NMR: A new method for the study of quadrupolar nuclei in solids[J]. J Am Chem Soc, 1995, 117(51): 12 779-12 787.[3] Gan Z. Isotropic NMR spectra of half-integer quadrupolar nuclei using satellite transitions and magic-angle spinning[J]. J Am Chem Soc, 2000, 122(13): 3 242-3 243.[4] Gan Z. Condensed phase dynamics, structure, and thermodynamics: spectroscopy, reactions, and relaxation[J]. J Chem Phys, 2001, 114(24): 10 845-10 853.[5] Huguenard C, Taulelle F, Knott B, et al. Optimizing STMAS[J]. J Magn Reson, 2002, 156(1): 131-137.[6] Amoureux J P, Huguenard C, Engelke F, et al. Unified representation of MQMAS and STMAS NMR of half-integer quadrupolar nuclei[J]. Chem Phys Lett, 2002, 356(5–6): 497-504.[7] Kwak H T, Gan Z. Double-quantum filtered STMAS[J]. J Mag Reson, 2003, 164(2): 369-372.[8] Amoureux J P, Pruski M. Theoretical and experimental assessment of single- and multiple-quantum cross-polarization in solid-state NMR[J]. Mol Phys, 2002, 100(10): 1 595-1 613.[9] Massiot D, Fayon F, Alonso B, et al. Chemical bonding differences evidenced from J-coupling in solid-state NMR experiments involving quadrupolar nuclei[J]. J Magn Reson, 2003, 164(1): 160-164. [10] Amoureux J P, Trebosc J, Wiench J W, et al. Measurement of J-couplings between spin-1/2 and quadrupolar nuclei by frequency selective solid-state NMR[J]. Solid State NMR, 2005, 24(4): 228-232.[11] Iuga D, Morais C, Gan Z, et al. NMR heteronuclear correlation between quadrupolar nuclei in solids[J]. J Am Chem Soc, 2005, 127(33): 11 540-11 541.[12] Deschamps M, Fayon F, Montouillout V, et al. Through-bond homonuclear correlation experiments in solid-state NMR applied to quadrupolar nuclei in Al–O–P–O–Al chains[J]. Chem Comm, 2006, (18): 1 924-1 925.[13] Trebosc J, Hu J B, Amoureux J P, et al. Through-space R3-HETCOR experiments between spin-1/2 and half-integer quadrupolar nuclei in solid-state NMR[J]. J Magn Reson, 2003, 186(2): 220-227.[14] Edén M, Grinshtein J, Frydman L. High resolution 3D exchange NMR spectroscopy and the mapping of connectivities between half-integer quadrupolar nuclei[J]. J Am Chem Soc, 2002, 124(8): 1 708-9 709.[15] Wi S, Heise H, Pines A. Reintroducing anisotropic interactions in magic-angle-spinning NMR of half-integer quadrupolar nuclei: 3D MQMAS[J]. J Am Chem Soc, 2002, 124(36): 10 652-10 653.[16] Dowell N G, Ashbrook S E, McManus J, et al. Elative orientation of quadrupole tensors from two-dimensional multiple-quantum MAS NMR [J]. Am Chem Soc, 2001, 123, 8 135−8 136; 2002, 124(6): 1 125-1 125.[17] Dowell N G, Ashbrook S E, Wimperis S. Relative orientation of quadrupole tensors from high-resolution NMR of powdered solids[J]. J Phy Chem, 2002, A106(41): 9 470-9 478[18] Liu Z, Deng F, Ding S. Effects of pulse strength, width, and sample spinning speed on the spectral spin diffusion of multiquantum coherences of spin-3/2 quadrupolar nuclei[J]. J Chem Phys, 2004, 120(2): 740-748.[19] Massiot D, Touzo B, Trumeau D, et al. Two-dimensional magic-angle spinning isotropic reconstruction sequences for quadrupolar nuclei[J]. Solid State NMR, 1996, 6(1): 73-83.[20] Amoureux J P, Fernandez C, Steuernagel S. ZFiltering in MQMAS NMR[J]. J Magn Reson, 1996, A123(1): 116-118.[21] Wu G, Rovnyak D, Griffin R G. Quantitative multiple-quantum magic-angle-spinning NMR spectroscopy of quadrupolar nuclei in solids[J]. J Am Chem Soc, 1996, 118(39): 9 326-9 332.[22] Ding S, McDowell C A. Shaped pulse excitation in multi-quantum magic-angle spinning spectroscopy of half-integer quadrupole spin systems[J]. Chem Phys Lett, 1997, 270(1–2): 81-86.[23] Marinelli L, Medek A, Frydman L. Composite pulse excitation schemes for MQMAS NMR of half-integer quadrupolar spins[J]. J Magn Reson, 1998, 132(1): 88-95.[24] Ding S, McDowell C A. Multiple-quantum MAS NMR spectroscopy of spin-3/2-quadrupolar spin systems using shaped pulses[J]. J Magn Reson, 1998, 135(1): 61-69.[25] Madhu P K, Goldbourt A, Frydman L, et al. Sensitivity enhancement of the MQMAS NMR experiment by fast amplitude modulation of the pulses[J]. Chem Phys Lett, 1999, 307(1–2): 41-47.[26] Kentgens A M, Verhagen R. Advantages of double frequency sweeps in static, MAS and MQMAS NMR of spin I = 3/2 nuclei[J]. Chem Phys Lett, 1999, 300(3–4): 435-443.[27] Yao Z, Kwak H T, Sakellariou D, et al. Sensitivity enhancement of the central transition NMR signal of quadrupolar nuclei under magic-angle spinning[J]. Chem Phys Lett, 2000, 327(1–2): 85-90.[28] Vosegaard T, Florian P, Massiot D, et al. Multiple quantum magic-angle spinning using rotary resonance excitation[J]. J Chem Phys, 2001, 114(10): 4 618-4 624.[29] Gan Z, Kwak H T. Enhancing MQMAS sensitivity using signals from multiple coherence transfer pathways[J]. J Magn Reson, 2004, 168(2): 346-351.[30] Amoureux J P, Delevoye L, Steuernagel S, et al. Increasing the sensitivity of 2D high-resolution NMR methods applied to quadrupolar nuclei[J]. J Magn Reson, 2005, 72(2): 268-278.[31] Amoureux J P, Delevoye L, Fink G, et al. Implementing SPAM into STMAS: A net sensitivity improvement in high-resolution NMR of quadrupolar nuclei[J]. J Magn Reson, 2005, 175(2): 285-299.[32] Wu Z, Ding S. Prevention of spinning induced sample deterioration during long time solid-state NMR experiments of quadrupolar spin systems[J]. Solid State NMR, 2009, 35(4): 214-216. |