[1] ANJUM A, ZUBER M, ZIA K M, et al. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers:A review of recent advancements[J]. Int J Biol Macromol, 2016(89):161-174. [2] POLTRONIERI P, KUMAR P. Polyhydroxyalkanoates (PHAs) in industrial applications[M]//MARTÍNEZ L, KHARISSOVA O, KHARISOV B. Handbook of ecomaterials. Springer, Cham, 2018:1-30. [3] CHANPRATEEP S. Current trends in biodegradable polyhydroxyalkanoates[J]. J Biosci Bioeng, 2010, 110(6):621-632. [4] NERKAR M, RAMSAY J A, RAMSAY B A, et al. Improvements in the melt and solid-state properties of poly(lactic acid), poly-3-hydroxyoctanoate and their blends through reactive modification[J]. Polymer, 2015(64):51-61. [5] LI L, HUANG W, WANG B, et al. Properties and structure of polylactide/poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PLA/PHBV) blend fibers[J]. Polymer, 2015(68):183-194. [6] BASNETT P, CHING K Y, STOLZ M, et al. Novel poly(3-hydroxyoctanoate)/poly(3-hydroxybutyrate) blends for medical applications[J]. Reactive and Functional Polymers, 2013, 73(10):1340-1348. [7] CORRE Y M, BRUZAUD S, GROHENS Y. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(propylene carbonate) blends:an efficient method to finely adjust properties of functional materials[J]. Macromol Mater Eng, 2013, 298(11):1176-1183. [8] ABDELWAHAB M A, FLYNN A, CHIOU B S, et al. Thermal, mechanical and morphological characterization of plasticized PLA-PHB blends[J]. Polym Degrad Stabil, 2012, 97(9):1822-1828. [9] WANG Q, YANG P, XIAN M, et al. Production of block copolymer poly(3-hydroxybutyrate)-block-poly(3-hydroxypropionate) with adjustable structure from an inexpensive carbon source[J]. ACS Macro Lett, 2013, 2(11):996-1000. [10] TRIPATHI L, WU L P, MENG D, et al. Biosynthesis and characterization of diblock copolymer of p(3-hydroxypropionate)-block-p(4-hydroxybutyrate) from recombinant Escherichia coli[J]. Biomacromolecules, 2013, 14(3):862-870. [11] LI S Y, DONG C L, WANG S Y, et al. Microbial production of polyhydroxyalkanoate block copolymer by recombinant Pseudomonas putida[J]. Appl Microbiol Biotechnol, 2011, 90(2):659-669. [12] LEE W H, LOO C Y, NOMURA C T, et al. Biosynthesis of polyhydroxyalkanoate copolymers from mixtures of plant oils and 3-hydroxyvalerate precursors[J]. Bioresour Technol, 2008, 99(15):6844-6851. [13] KOLLER M, BONA R, CHIELLINI E, et al. Polyhydroxyalkanoate production from whey by Pseudomonas hydrogenovora[J]. Bioresour Technol, 2008, 99(11):4854-4863. [14] PHUKON P, SAIKIA J P, KONWAR B K. Bio-plastic (P-3HB-co-3HV) from Bacillus circulans (MTCC 8167) and its biodegradation[J]. Colloids Surf B Biointerfaces, 2012(92):30-34. [15] RAO U, SRIDHAR R, SEHGAL P K. Biosynthesis and biocompatibility of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) produced by Cupriavidus necator from spent palm oil[J]. Biochem Eng J, 2010, 49(1):13-20. [16] MENG D C, SHI Z Y, WU L P, et al. Production and characterization of poly(3-hydroxypropionate-co-4-hydroxybutyrate) with fully controllable structures by recombinant Escherichia coli containing an engineered pathway[J]. Metab Eng, 2012, 14(4):317-324. [17] CHANPRATEEP S, BUASRI K, MUANGWONG A, et al. Biosynthesis and biocompatibility of biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate)[J]. Polym Degrad Stabil, 2010, 95(10):2003-2012. [18] FUKUI T, SUZUKI M, TSUGE T, et al. Microbial synthesis of poly((r)-3-hydroxybutyrate-co-3-hydroxypropionate) from unrelated carbon sources by engineered cupriavidus necator[J]. Biomacromolecules, 2009, 10(4):700-706. [19] WANG Q, YANG P, XIAN M, et al. Biosynthesis of poly(3-hydroxypropionate-co-3-hydroxybutyrate) with fully controllable structures from glycerol[J]. Bioresour Technol, 2013(142):741-744. [20] OBRUCA S, BENESOVA P, PETRIK S, et al. Production of polyhydroxyalkanoates using hydrolysate of spent coffee grounds[J]. Process Biochemistry, 2014, 49(9):1409-1414. [21] WONG Y M, BRIGHAM C J, RHA C, et al. Biosynthesis and characterization of polyhydroxyalkanoate containing high 3-hydroxyhexanoate monomer fraction from crude palm kernel oil by recombinant Cupriavidus necator[J]. Bioresour Technol, 2012(121):320-327. [22] SIMON-COLIN C, GOUIN C, LEMECHKO P, et al. Biosynthesis and characterization of polyhydroxyalkanoates by Pseudomonas guezennei from alkanoates and glucose[J]. Int J Biol Macromol, 2012, 51(5):1063-1069. [23] DE LIMA J A, FELISBERTI M I. Poly(hydroxybutyrate) and epichlorohydrin elastomers blends:Phase behavior and morphology[J]. Eur Polym J, 2006, 42(3):602-614. [24] ALTHURI A, MATHEW J, SINDHU R, et al. Microbial synthesis of poly-3-hydroxybutyrate and its application as targeted drug delivery vehicle[J]. Bioresour Technol, 2013(145):290-296. [25] MASOOD F, HASAN F, AHMED S, et al. Biosynthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from Bacillus cereus FA11 isolated from TNT-contaminated soil[J]. Ann Microbiol, 2011, 62(4):1377-1384. [26] CERRONE F, S NCHEZ-PEINADO M D M, RODR GUEZ-D AZ M, et al. PHAs production by strains belonging to Massilia genus from starch[J]. Starch, 2011, 63(4):236-240. [27] SHAFEE E E. The influence of semicrystalline morphology on the dielectric relaxation properties of poly(3-hydroxybutyrate)[J]. Eur Polym J, 2001, 37(8):1677-1684. [28] NOZIROV F, SZCZESNIAK E, FOJUD Z, et al. H-1 and C-13 NMR studies of molecular dynamics in the biocopolymer of glycolide and epsilon-caprolactone[J]. Solid State Nucl Mag, 2002, 22(1):19-28. [29] ZHANG L M, TANG H R, HOU G J, et al. The domain structure and mobility of semi-crystalline poly(3-hydroxybutyrate) and poly(3-hydroxybutyrateco-3-hydroxyvalerate):A solid-state NMR study[J]. Polymer, 2007, 48(10):2928-2938. [30] ABRAGAM A. The principles of nuclear magnetism[M]. Oxford University Press, 1961:120. [31] NOZIROV F, FOJUD Z, KLINOWSKI J, et al. High-resolution solid-state C-13 NMR studies of poly (R)-3-hydroxybutyric acid[J]. Solid State Nucl Mag, 2002, 21(3/4):197-203. [32] NOZIROV F, NAZIROV A, JURGA S, et al. Molecular dynamics of poly(L-lactide) biopolymer studied by wide-line solid-state H-1 and H-2 NMR spectroscopy[J]. Solid State Nucl Mag, 2006, 29(4):258-266. [33] ARRIETA M P, L PEZ J, HERN NDEZ A, et al. Ternary PLA-PHB-Limonene blends intended for biodegradable food packaging applications[J]. Eur Polym J, 2014(50):255-270. [34] ZEMBOUAI I, KACI M, BRUZAUD S, et al. A study of morphological, thermal, rheological and barrier properties of Poly(3-hydroxybutyrate-Co-3-Hydroxyvalerate)/polylactide blends prepared by melt mixing[J]. Polym Test, 2013, 32(5):842-851. [35] TANG H R, BELTON P S. Molecular motions of D-alpha-galacturonic acid (GA) and methyl-D-alpha-galacturonic acid methyl ester (MGAM) in the solid state-A proton NMR study[J]. Solid State Nucl Mag, 1998, 12(1):21-30. [36] WANG Y L, TANG H R, BELTON P S. Solid state NMR studies of the molecular motions in the polycrystalline alpha-L-fucopyranose and methyl alpha-L-fucopyranoside[J]. J Phys Chem B, 2002, 106(49):12834-12840. [37] BECKMANN P A, BURBANK K S, LAU M M W, et al. Solid state proton spin-lattice relaxation in four structurally related organic molecules[J]. Chem Phys, 2003, 290(2/3):241-250. [38] MCCALL D W, DOUGLASS D C. Molecular motion in polyethylene.V. (NMR-coparison with dielectric results-20 degrees-130 degreesc-e)[J]. Appl Phys Lett, 1965, 7(1):12-14. [39] BECKMANN P A, BURBANK K S, CLEMO K M, et al. H-1 nuclear magnetic resonance spin-lattice relaxation, C-13 magic-angle-spinning nuclear magnetic resonance spectroscopy, differential scanning calorimetry, and x-ray diffraction of two polymorphs of 2,6-di-tert-butylnaphthalene[J]. J Chem Phys, 2000, 113(5):1958-1965. [40] PACANSKY J, YOSHIMINE M. Theoretical-studies of the barriers for internal-rotation of methyl-groups in the tert-butyl radical[J]. J Phys Chem, 1986, 90(9):1980-1983. |