[1] Pickart C M. Mechanisms underlying ubiquitination[J]. Annu Rev Biochem, 2001, 70: 503-533.[2] Gareau J R, Lima C D. The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition[J]. Nat Rev Mol Cell Bio, 2010, 11: 861-871.[3] Hay R T. Decoding the SUMO signal[J]. Biochem Soc Trans, 2013, 41: 463-473.[4] Matic I, van Hagen M, Schimmel J, et al. In vivo identification of human SUMO polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy[J]. Mol Cell Proteomics, 2007, 7: 132-144.[5] Cheng C H, Lo Y H, Liang S S, et al. SUMO modifications control assembly of synaptonemal complex and polycomplex in meiosis of Saccharomyces cerevisiae[J]. Genes Dev, 2006, 20: 2 067-2 081.[6] Schwartz D C, Felberbaum R, Hochstrasser M. The Ulp2 SUMO protease is required for cell division following termination of the DNA damage checkpoint[J]. Mol Cell Biol, 2007, 27: 6 948-6 961.[7] Rodriguez M S, Dargemont C, Hay R T. SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting[J]. J Biol Chem, 2001, 276: 12 654-12 659.[8] Sampson D A, Wang M, Matunis M J. The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification[J]. J Biol Chem, 2001, 276: 21 664-21 669.[9] Meroni G. Genomics and evolution of the TRIM gene family[J]. Adv Exp Med Biol, 2012, 770: 1-9.[10] Bernardi R, Pandolfi P P. Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies[J]. Nat Rev Mol Cell Biol, 2007, 8: 1 006-1 016.[11] Jensen K, Shiels C, Freemont P S. PML protein isoforms and the RBCC/TRIM motif[J]. Oncogene Research, 2001, 20: 7 223-7 233.[12] Carracedo A, Ito K, Pandolfi P P. The nuclear bodies inside out: PML conquers the cytoplasm[J]. Curr Opin Cell Biol, 2011, 23: 360-366.[13] Lallemand-Breitenbach V, Zhu J, Puvion F, et al. Role of promyelocytic leukemia (PML) sumolation in nuclear body formation, 11s proteasome recruitment, and as2O3-Induced PML or PML/Retinoic acid receptor α degradation[J]. J Exp Med, 2001, 193: 1 361-1 371.[14] Duprez E, Saurin A J, Desterro J M, et al. SUMO-1 modification of the acute promyelocytic leukaemia protein PML: implications for nuclear localisation[J]. J Cell Sci, 1999, 112(Pt 3): 381-393. [15] Chu Y, Yang X. SUMO E3 ligase activity of TRIM proteins[J]. Oncogene, 2011, 30: 1 108-1 116.[16] Huang S Y, Chang C F, Fang P J, et al. The RING domain of human promyelocytic leukemia protein (PML)[J]. J Biomol NMR, 2015, 61: 173-180.[17] Huang S Y, Naik M T, Chang C F, et al. NMR structure note: The B-box 1 dimer of human promyelocytic leukemia protein[J]. J Biomol NMR, 2014, 60: 275-281.[18] Borden K L, Boddy M N, Lally J, et al. The solution structure of the RING finger domain from the acute promyelocytic leukaemia proto-oncoprotein PML[J]. EMBO J, 1995, 14: 1 532-1 541.[19] Flotho A, Melchior F. Sumoylation: a regulatory protein modification in health and disease[J]. Annu Rev Biochem, 2013, 82: 357-385.[20] Bernier-Villamor V, Sampson D A, Matunis M J, et al. Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1[J]. Cell, 2002, 108: 345-356.[21] Salomoni P, Khelifi A F. Daxx: death or survival protein[J]? Trends Cell Biol, 2006, 16: 97-104.[22] Shih H M, Chang C C, Kuo H Y, et al. Daxx mediates SUMO-dependent transcriptional control and subnuclear compartmentalization[J]. Biochem Soc T, 2007, 35: 1 397-1 400.[23] Croxton R, Puto L A, de Belle I, et al. Daxx represses expression of a subset of antiapoptotic genes regulated by nuclear factor-kappa B[J]. Cancer Res, 2006, 66: 9 026-9 035.[24] Torii S, Egan D A, Evans R A, et al. Human Daxx regulates Fas-induced apoptosis from nuclear PML oncogenic domains (PODs)[J]. Embo J, 1999, 18: 6 037-6 049.[25] Lin D -Y, Huang Y -S, Jeng J -C, et al. Role of SUMO-interacting motif in daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors[J]. Mol Cell, 2006, 24: 341-354.[26] Chang C C, Naik M T, Huang Y S, et al. Structural and functional roles of Daxx SIM phosphorylation in SUMO paralog-selective binding and apoptosis modulation[J]. Mol Cell, 2011, 42: 62-74.[27] Olsten M E, Litchfield D W. Order or chaos? an evaluation of the regulation of protein kinase CK2[J]. Biochem Cell Biol, 2004, 82: 681-693.[28] Matic I, van Hagen M, Schimmel J, et al. In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy[J]. Mol Cellular Proteomics, 2008, 7: 132-144.[29] Poulsen S L, Hansen R K, Wagner S A, et al. RNF111/Arkadia is a SUMO-targeted ubiquitin ligase that facilitates the DNA damage response[J]. J Cell Biol, 2013, 201: 797-807.[30] Tatham M H, Geoffroy M C, Shen L, et al. RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation[J]. Nature Cell Biol, 2008, 10: 538-546.[31] Plechanovova A, Jaffray E G, Tatham M H, et al. Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis[J]. Nature, 2012, 489: U115-U135.[32] Bruderer R, Tatham M H, Plechanovova A, et al. Purification and identification of endogenous polySUMO conjugates[J]. EMBO Rep, 2011, 12: 142-148.[33] Sun H Y, Hunter T. Poly-small ubiquitin-like modifier (PolySUMO)-binding proteins identified through a string search[J]. J Biol Chem, 2012, 287: 42 071-42 083.[34] Lallemand-Breitenbach V, Jeanne M, Benhenda S, et al. Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway[J]. Nat Cell Biol, 2008, 10: 547-555.[35] Keusekotten K, Bade V N, Meyer-Teschendorf K, et al. Multivalent interactions of the SUMO-interaction motifs in RING-finger protein 4 (RNF4) determine the specificity for chains of the small ubiquitin-related modifier (SUMO)[J].Biochem J, 2014, 457(1): 207-214.[36] Kung C C, Naik M T, Wang S H, et al. Structural analysis of poly-SUMO chain recognition by the RNF4-SIMs domain[J]. Biochem J, 2014, 462: 53-65.[37] Wishart D S, Case D A. Use of chemical shifts in macromolecular structure determination[J]. Methods Enzymol, 2001, 338: 3-34.[38] Tamiola K, Mulder F A A. Using NMR chemical shifts to calculate the propensity for structural order and disorder in proteins[J]. Biochem Soc T, 2012, 40: 1 014-1 020.[39] Rambo R P, Tainer J A. Super-resolution in solution X-ray scattering and its applications to structural systems biology[J]. Ann Rev Biophys, 2013, 42(42): 415-441.[40] Bernado P, Mylonas E, Petoukhov M V, et al. Structural characterization of flexible proteins using small-angle X-ray scattering[J]. J Am Chem Soc, 2007, 129: 5 656-5 664. |