Chinese Journal of Magnetic Resonance
SUTRISNO Andre, HUANG Yi-ning*
Received:
2013-02-11
Revised:
2013-11-02
Online:
2013-12-05
Published:
2013-12-05
About author:
Huang Yi-ning, Tel: 519-661-2111x86384, E-mail: yhuang@uwo.ca.
Supported by:
a research grant from the Natural Science and Engineering Research Council of Canada, an equipment grant from the Canada Foundation for Innovation, and funding from the Canada Research Chair program.
CLC Number:
SUTRISNO Andre, HUANG Yi-ning*. Multinuclear Solid-State NMR and Quantum Chemical Investigations of Layered Transition Metal Disulfides[J]. Chinese Journal of Magnetic Resonance.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1]Alberti G, Costantino U. Layered solids and their intercalation chemistry[J]. Compr Supramol Chem, 1996, 7: 1-23.[2]Bruce D W, O'Hare D. Inorganic Materials-Chapter 4: Inorganic Intercalation Compounds (2nd ed.)[M]. New York: John Wiley & Sons Ltd., 1996. 165-235.[3]Guzman R, Lavela P, Perez-Vicente C, et al. Intercalation chemistry of electron donating species into metal chalcogenides with interlayer interactions[J]. Trends Inorg Chem, 1998, 5: 161-181.[4]Jacobson A J. Solid State Chemistry: Compound-Chapter 6: Intercalation Reactions of Layered Compounds[M]. Oxford: Clarendon Press, 1992. 182-233.[5]O'Hare D. Inorganic intercalation compounds[J]. Inorg Mater, 1992: 165-235.[6]Rouxel J. Intercalation chemistry in transition metal dichalcogenides[J]. J Mater Educ, 1986, 8(1-2): 45-81.[7]Whittingham M S. Chemistry of intercalation compounds: Metal guests in chalcogenide hosts[J]. Prog Solid State Chem, 1978, 12(1): 41-99.[8]Wilson J A, Yoffe A D. Transition metal dichalcogenides. Discussion and interpretation of the observed optical, electrical, and structural properties[J]. Advan Phys, 1969, 18(73): 193-335.[9]Edwards J C, Ellis P D. Solid-state molybdenum 95 NMR study of hydrodesulfurization catalysts. 2. Investigation of reduced/sulfided molybdena-alumina catalysts and the effect of promoter ions on "fresh" and reduced/sulfided molybdena-alumina[J]. Langmuir, 1991, 7(10): 2 117-2 134.[10]Bastow T J. 95Mo NMR: hyperfine interactions in MoO3, MoS2, MoSe2, Mo3Se4, MoSi2 and Mo2C[J]. Solid State Nucl Magn Reson, 1998, 12(4): 191-199.[11]d'Espinose de Lacaillerie J B, Gan Z. MAS NMR Strategies for the Characterization of Supported Molybdenum Catalysts[J]. Appl Magn Reson, 2007, 32(4): 499-511.[12]Panich A M, Shames A I, Rosentsveig R, et al. A magnetic resonance study of MoS2 fullerene-like nanoparticles[J]. J Phys: Condens Matter, 2009, 21(39): 395301/01-06.[13]Jakobsen H J, Bildsoe H, Skibsted J, et al. Natural abundance solid-state 95Mo MAS NMR of MoS2 reveals precise 95Mo anisotropic parameters from its central and satellite transitions[J]. Chem Commun, 2010, 46(12): 2 103-2 105.[14]Larsen F H, Jakobsen H J, Ellis P D, et al. Sensitivity Enhanced Quadrupolar Echo NMR of Half-Integer Quadrupolar Nuclei. Magnitudes and Relative Orientation of Chemical Shielding and Quadrupolar Coupling Tensors[J]. J Phys Chem A, 1997, 101(46): 8 597-8 606.[15]Kentgens A P M, Verhagen R. Advantages of double frequency sweeps in static, MAS and MQMAS NMR of spin I=3/2 nuclei[J]. Chem Phys Lett, 1999, 300(3-4): 435-443.[16]Schurko R W, Hung I, Widdifield C M. Signal enhancement in NMR spectra of half-integer quadrupolar nuclei via DFS-QCPMG and RAPT-QCPMG pulse sequences[J]. Chem Phys Lett, 2003, 379(1-2): 1-10.[17]Siegel R, Nakashima T T, Wasylishen R E. Signal enhancement of NMR spectra of half-integer quadrupolar nuclei in solids using hyperbolic secant pulses[J]. Chem Phys Lett, 2004, 388(4-6): 441-445.[18]O'Dell L A, Schurko R W. QCPMG using adiabatic pulses for faster acquisition of ultra-wideline NMR spectra[J]. Chem Phys Lett, 2008, 464(1-3): 97-102.[19]Massiot D, Farnan I, Gautier N, et al. 71Ga and 69Ga nuclear magnetic resonance study of [beta]-Ga2O3: resolution of four- and six-fold coordinated Ga sites in static conditions[J]. Solid State Nucl Magn Reson, 1995, 4(4): 241-248.[20]Tang J A, Masuda J D, Boyle T J, et al. Ultra-wideline 27Al NMR investigation of three- and five-coordinate aluminum environments[J]. ChemPhysChem, 2006, 7(1): 117-130.[21]Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. J Phys: Condens Matter, 2002, 14(11): 2 717-2 744.[22]Clark S J, Segall M D, Pickard C J, et al. First principles methods using CASTEP[J]. Z Kristallogr, 2005, 220(5-6): 567-570.[23]Sutrisno A, Terskikh V V, Huang Y. A natural abundance 33S solid-state NMR study of layered transition metal disulfides at ultrahigh magnetic field[J]. Chem Commun, 2009, (2): 186-188.[24]Bronsema K D, De Boer J L, Jellinek F. The structure of molybdenum diselenide and disulfide[J]. Z Anorg Allg Chem, 1986, 540-541: 15-17.[25]Jellinek F. Sulfides of the transition metals of Groups IV, V, and VI[J]. Arkiv Kemi, 1963, 20: 447-480.[26]Kusawake T, Takahashi Y, Wey M Y, et al. X-ray structure analysis and electron density distributions of the layered compounds CuxTiS2[J]. J Phys: Condens Matter, 2001, 13(44): 9 913-9 921.[27]Schutte W J, De Boer J L, Jellinek F. Crystal structures of tungsten disulfide and diselenide[J]. J Solid State Chem, 1987, 70(2): 207-209.[28]Spijkerman A, de Boer J L, Meetsma A, et al. X-ray crystal-structure refinement of the nearly commensurate phase of 1T-TaS2 in (3+2)dimensional superspace[J]. Phys Rev B: Condens Matter, 1997, 56(21): 13 757-13 767.[29]Berger S, Bock W, Marth C F, Raguse B, et al. Titanium-47,49 NMR of some titanium compounds[J]. Magn Reson Chem, 1990, 28(6): 559-560.[30]Bastow T J, Gibson M A, Forwood C T. 47,49Ti NMR: hyperfine interactions in oxides and metals[J]. Solid State Nucl Magn Reson, 1998, 12(4): 201-209.[31]Padro D, Howes A P, Smith M E, et al. Determination of titanium NMR parameters of ATiO3 compounds: correlations with structural distortion[J]. Solid State Nucl Magn Reson, 2000, 15(4): 231-236.[32]Bastow T J, Whitfield H J. 137Ba and 47,49Ti NMR. Electric field gradients in the non-cubic phases of BaTiO3[J]. Solid State Commun, 2001, 117(8): 483-488.[33]Gervais C, Smith M E, Pottier A, et al. Solid-state 47,49Ti NMR determination of the phase distribution of titania nanoparticles[J]. Chem Mater, 2001, 13(2): 462-467.[34]Padro D, Jennings V, Smith M E, et al. Variations of Titanium Interactions in Solid State NMR-Correlations to Local Structure[J]. J Phys Chem B, 2002, 106(51): 13 176-13 185.[35]MacKenzie K J D, Smith M E. Multinuclear Solid-State NMR of Inorganic Materials[M]. Amsterdam: Pergamon, 2002, 740.[36]Ganapathy S, Gore K U, Kumar R, et al. Multinuclear (27Al, 29Si, 47,49Ti) solid-state NMR of titanium substituted zeolite USY[J]. Solid State Nucl Magn Reson, 2003, 24(2-3): 184-195.[37]Gervais C, Veautier D, Smith M E, et al. Solid state 47,49Ti, 87Sr and 137Ba NMR characterization of mixed barium/strontium titanate perovskites[J]. Solid State Nucl Magn Reson, 2004, 26(3-4): 147-152.[38]Erben M, Ruzicka A, Picka M, et al. 47,49Ti NMR spectra of half-sandwich titanium(IV) complexes[J]. Magn Reson Chem, 2004, 42(4): 414-417.[39]Larsen F H, Farnan I, Lipton A S. Separation of 47Ti and 49Ti solid-state NMR lineshapes by static QCPMG experiments at multiple fields[J]. J Magn Reson, 2006, 178(2): 228-236.[40]Wagner G W, Procell L R, Munavalli S. 27Al, 47,49Ti, 31P, and 13C MAS NMR Study of VX, GD, and HD Reactions with Nanosize Al2O3, Conventional Al2O3 and TiO2, and Aluminum and Titanium Metal[J]. J Phys Chem C, 2007, 111(47): 17 564-17 569.[41]Ballesteros R, Fajardo M, Sierra I, et al. Solid-State 49/47Ti NMR of Titanium-Based MCM-41 Hybrid Materials[J]. Langmuir, 2009, 25(21): 12 706-12 712.[42]Zhu J, Trefiak N, Woo T K, et al. A 47/49Ti Solid-State NMR Study of Layered Titanium Phosphates at Ultrahigh Magnetic Field[J]. J Phys Chem C, 2009, 113(23): 10 029-10 037.[43]Tarasov V P, Kirakosyan G A, Padurets L N. 2H and 47,49Ti nuclear magnetic resonance in the gamma phase of titanium deuterides TiDx[J]. Phys Solid State, 2010, 52(3): 493-503.[44]Rossini A J, Hung I, Schurko R W. Solid-State 47/49Ti NMR of Titanocene Chlorides[J]. J Phys Chem Lett, 2010, 1(20): 2 989-2 998.[45]Eichele K, Wasylishen R E W. Solids: Solid-State NMR Simulation Package, v. 1.17.30[CP]. 2001.[46]Peng L, Liu Y, Kim N, et al. Detection of Bronsted acid sites in zeolite HY with high-field 17O-MAS-NMR techniques[J]. Nat Mater, 2005, 4(3): 216-219.[47]Dogan F, Hammond K D, Tompsett G A, et al. Searching for Microporous, Strongly Basic Catalysts: Experimental and Calculated 29Si NMR Spectra of Heavily Nitrogen-Doped Y Zeolites[J]. J Am Chem Soc, 2009, 131(31): 11 062-11 079.[48]Guan J, Li X, Yang G, et al. Interactions of phosphorous molecules with the acid sites of H-Beta zeolite: Insights from solid-state NMR techniques and theoretical calculations[J]. J Mol Catal A: Chem, 2009, 310(1-2): 113-120.[49]Brouwer D H, Moudrakovski I L, Darton R J, et al. Comparing quantum-chemical calculation methods for structural investigation of zeolite crystal structures by solid-state NMR spectroscopy\[J\]. Magn Reson Chem, 2010, 48(S1): S113-S121.[50]Chapman R P, Bryce D L. A high-field solid-state 35/37Cl NMR and quantum chemical investigation of the chlorine quadrupolar and chemical shift tensors in amino acid hydrochlorides[J]. Phys Chem Chem Phys, 2007, 9(47): 6 219-6 230.[51]Lo A Y H, Hanna J V, Schurko R W. A theoretical study of 51V electric field gradient tensors in pyrovanadates and metavanadates[J]. Appl Magn Reson, 2007, 32(4): 691-708.[52]Cuny J, Messaoudi S, Alonzo V, et al. DFT calculations of quadrupolar solid-state NMR properties: some examples in solid-state inorganic chemistry[J]. J Comput Chem, 2008, 29 (13): 2 279-2 287.[53]Yan Z, Kirby C W, Huang Y. Directly Probing the Metal Center Environment in Layered Zirconium Phosphates by SolidState 91Zr NMR\[J\]. J Phys Chem C, 2008, 112(23): 8 575-8 586.[54]Zhu J, Lin Z, Yan Z, et al. 91Zr and 25Mg solid-state NMR characterization of the local environments of the metal centers in microporous materials[J]. Chem Phys Lett, 2008, 461(4-6): 260-265.[55]O'Dell L A, Schurko R W. Static solid-state 14N NMR and computational studies of nitrogen EFG tensors in some crystalline amino acids[J]. Phys Chem Chem Phys, 2009, 11(32): 7 069-7 077.[56]Bastow T J, Smith M E, Stuart S N. Observation of zirconium-91 NMR in zirconium-based metals and oxides[J]. Chem Phys Lett, 1992, 191(1-2): 125-129.[57]Hung I, Schurko R W. Solid-State 91Zr NMR of Bis(cyclopentadienyl)-dichlorozirconium(IV)[J]. J Phys Chem B, 2004, 108(26): 9 060-9 069.[58]Pauvert O, Fayon F, Rakhmatullin A, et al. 91Zr Nuclear Magnetic Resonance Spectroscopy of Solid Zirconium Halides at High Magnetic Field[J]. Inorg Chem, 2009, 48(18): 8 709-8 717.[59]Rossini A J, Hung I, Johnson S A, et al. Solid-State 91Zr NMR Spectroscopy Studies of Zirconocene Olefin Polymerization Catalyst Precursors[J]. J Am Chem Soc, 2010, 132(51): 18 301-18 317.[60]Fedotov M, Belyaev A. A study of the hydrolysis of ZrF6 2- and the structure of intermediate hydrolysis products by 19F and 91Zr NMR in the 9.4 T field[J]. J Struct Chem, 2011, 52(1): 69-74.[61]Lapina O B, Khabibulin D F, Terskikh V V. Multinuclear NMR study of silica fiberglass modified with zirconia[J]. Solid State Nucl Magn Reson, 2011, 39(3-4): 47-57.[62]Wu X L, Lieber C M. Hexagonal domain-like charge density wave phase of tantalum disulfide determined by scanning tunneling microscopy\[J\]. Science, 1989, 243(4899): 1 703-1 705.[63]Naito M, Nishihara H, Tanaka S. NMR study of tantalum-181 in the commensurate charge density wave state of 1T tantalum diselenide and 1T tantalum disulfide[J]. J Phys C: Solid State Phys, 1983, 16(12): 387-393.[64]Naito M, Tanaka S. NMR study of tantalum-181 in the commensurate charge-density-wave state of 1T tantalum diselenide and 1T tantalum disulfide single crystals: a microscopic investigation of the three-dimensional ordering of the charge density waves[J]. J Phys Soc Jpn, 1984, 53(4): 1 217-1 220.[65]Belton P S, Cox I J, Harris R K. Experimental sulfur-33 nuclear magnetic resonance spectroscopy[J]. J Chem Soc, Faraday Trans 2, 1985, 81(1): 63-75.[66]Eckert H, Yesinowski J P. Sulfur-33 NMR at natural abundance in solids[J]. J Am Chem Soc, 1986, 108(9): 2 140-2 146.[67]Hinton J F. Sulfur-33 NMR spectroscopy[J]. Annu Rep NMR Spectrosc, 1987, 19: 1-34.[68]Bastow T J, Stuart S N. NMR study of the zinc chalcogenides (ZnX, X=O, S, Se, Te)[J]. Phys Status Solidi B, 1988, 145(2): 719-728.[69]Wagler T A, Daunch W A, Rinaldi P L, et al. Solid state 33S NMR of inorganic sulfides[J]. J Magn Reson, 2003, 161(2): 191-197.[70]Couch S, Howes A P, Kohn S C, et al. 33S solid state NMR of sulphur speciation in silicate glasses[J]. Solid State Nucl Magn Reson, 2004, 26(3-4): 203-208.[71]Wagler T A, Daunch W A, Panzner M, et al. Solid-state 33S MAS NMR of inorganic sulfates[J]. J Magn Reson, 2004, 170(2): 336-344.[72]d'Espinose de Lacaillerie J B, Barberon F, Bresson B, et al. Applicability of natural abundance 33S solid-state NMR to cement chemistry[J]. Cem Concr Res, 2006, 36(9): 1 781-1 783.[73]Jakobsen H J, Bildsoee H, Skibsted J, et al. A strategy for acquisition and analysis of complex natural abundance 33S solidstate NMR spectra of a disordered tetrathio transitionmetal anion\[J\]. J Magn Reson, 2010, 202(2): 173-179. [74]Moudrakovski I, Lang S, Patchkovskii S, et al. High Field 33S Solid State NMR and First-Principles Calculations in Potassium Sulfates[J]. J Phys Chem A, 2010, 114(1): 309-316.[75]O'Dell L A, Moudrakovski I L. Testing the sensitivity limits of 33S NMR: An ultra-wideline study of elemental sulfur[J]. J Magn Reson, 2010, 207(2): 345-347.[76]Pallister P J, Moudrakovski I L, Ripmeester J A. High-field multinuclear solid-state nuclear magnetic resonance (NMR) and first principle calculations in MgSO4 polymorphs[J]. Can J Chem, 2011, 89(9): 1 076-1 086.[77]O'Dell L A, Ratcliffe C I. Crystal structure based design of signal enhancement schemes for solid-state NMR of insensitive half-integer quadrupolar nuclei[J]. J Phys Chem A, 2011, 115(5): 747-752.[78]Yates J R, Pickard C J, Mauri F. Calculation of NMR chemical shifts for extended systems using ultrasoft pseudopotentials[J]. Phys Rev B: Condens Matter Mater Phys, 2007, 76(2): 024401/0111.[79]Yates J R, Pickard C J, Payne M C, et al. Relativistic nuclear magnetic resonance chemical shifts of heavy nuclei with pseudopotentials and the zeroth-order regular approximation[J]. J Chem Phys, 2003, 118(13): 5 746-5 753.[80]Pyykko P. Year2008 nuclear quadrupole moments[J]. Mol Phys, 2008, 106(16-18): 1 965-1 974.[81]Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03 Program, Rev. B.03[CP]. Gaussian, Inc.: Pittsburgh, PA, 2003.[82]Huzinaga S, Andzelm J, Klobukowski M, et al. Gaussian Basis Sets for Molecular Calculations[M]. New York: Elsevier, 1984. 16, 426.[83]Bryce D L, Wasylishen R E. A 95Mo and 13C solid-state NMR and relativistic DFT investigation of mesitylenetricarbonylmolybdenum(0) a typical transition metal pianostool complex\[J\]. Phys Chem Chem Phys, 2002, 4(15): 3 591-3 600.[84]Adiga S, Aebi D, Bryce D L. EFGShield a program for parsing and summarizing the results of electric field gradient and nuclear magnetic shielding tensor calculations[J]. Can J Chem, 2007, 85(7-8): 496-505. |
[1] | XU Xiao-jun, WANG Shen-lin. Probing Membrane Protein Interactions by 19F Solid-State NMR [J]. Chinese Journal of Magnetic Resonance, 2019, 36(2): 238-251. |
[2] | GE Yu-wei, LIU Mai-li, GAN Zhe-hong, LI Cong-gang. Measurements of Proton Chemical Shift Anisotropy [J]. Chinese Journal of Magnetic Resonance, 2018, 35(2): 255-267. |
[3] | JIANG Ting-ting, FU Xiao-bin, WU Jin-ze, WANG Jia-chen, YAO Ye-feng, ZHOU Bing. Structure and Dynamics of Polymer-Ceramic Interface in Li1.5Al0.5Ge1.5P3O12/Polyether Solid Electrolyte:A Solid-State NMR Study [J]. Chinese Journal of Magnetic Resonance, 2017, 34(4): 429-438. |
[4] | SUN Yi, CHEN Yan-ke, LI Jian-ping, ZHAO Yong-xiang, YANG Jun. Efficiency of Double Cross Polarization in Magic-Angle Spinning Solid-State NMR Studies on Membrane Proteins [J]. Chinese Journal of Magnetic Resonance, 2017, 34(3): 257-265. |
[5] | LI Dong-bei, XU Shuai, YU Zhi-wu. Application of Solid-State NMR to Bone and Bone Biomaterials [J]. Chinese Journal of Magnetic Resonance, 2017, 34(1): 115-129. |
[6] | PENG Yong-jin, SUN Ping-chuan, LI Bao-hui. Dynamic Evolution in PVPh/PEO Blend Studied by Solid-State NMR [J]. Chinese Journal of Magnetic Resonance, 2016, 33(2): 188-197. |
[7] | HAN Ming-yue,ZHENG Hui,HU Bing-wen*,YANG Guang*. Compressed Sensing Reconstruction with Iterative Soft Thresholding for Two-Dimensional Solid-State NMR Spectra with Broad Peaks [J]. Chinese Journal of Magnetic Resonance, 2015, 32(4): 551-562. |
[8] | XU Wei-jing,LIU Qing-hua,HU Bing-wen*,CHEN Qun. Structures of Crystalline Poly(ethyl oxide)/LiAsF6 Complexes Determined by Solid-State High-Resolution 13C Nuclear Magnetic Resonance [J]. Chinese Journal of Magnetic Resonance, 2015, 32(3): 399-408. |
[9] | DING Li-hong1,2,LIU Xiao-long2,WANG Qiang2,LIU Wen-tao1,ZHU Cheng-shen1,ZHENG An-min2,DENG Feng2*. Solid-State NMR Studies of TBA3[VW5O19] and TBA4[PVW11O40] [J]. Chinese Journal of Magnetic Resonance, 2015, 32(3): 409-418. |
[10] | XIAO Ting,YAO Ye-feng*. Local and Collective Chain Motions in Semi-Crystalline Polyethylenes—A Solid-State NMR Approach [J]. Chinese Journal of Magnetic Resonance, 2015, 32(2): 208-227. |
[11] | YU Gui-yun1,PENG Lu-ming2*. Solid-State NMR Studies of Layered Double Hydroxides: A Review [J]. Chinese Journal of Magnetic Resonance, 2015, 32(2): 228-247. |
[12] | WANG Fen-fen1,CHEN Tie-hong1,SUN Ping-chuan1,2,3*. Heterogeneous Structure and Miscibility of Phenylboronic Acid-Rich Chitosan Nanoparticles as Revealed by Advanced Solid-State NMR [J]. Chinese Journal of Magnetic Resonance, 2015, 32(2): 354-362. |
[13] | CHENG Ren-hao,WU Zhen,HUANG Po-chi,KE Chi-cheng,DING Shang-wu*. Sensitivity Enhancement of Multiple Quantum and Satellite Transition Magic Angle Spinning Spectra by Optimizing the Initial State [J]. Chinese Journal of Magnetic Resonance, 2015, 32(2): 363-372. |
[14] | SHEN Ming1,5,ROOPCHAND Rabia2,MANANGA Eugene S3*,AMOUREUX Jean-paul1,5,CHEN Qun1,BOUTIS Gregory S4*,HU Bing-wen1*. Theoretical Calculation of a Composite Pulse with 8-Step Phase Cycling for 2H Broadband Excitation by Average Hamiltonian Theory [J]. Chinese Journal of Magnetic Resonance, 2015, 32(2): 373-381. |
[15] | TANG Xin-qi1,2,ZHANG Zheng-feng1,YANG Jun1*. Heating of Biological Samples in Studies of MAS Solid-State NMR [J]. Chinese Journal of Magnetic Resonance, 2015, 32(1): 123-140. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||