Chinese Journal of Magnetic Resonance ›› 2015, Vol. 32 ›› Issue (1): 123-140.doi: 10.11938/cjmr20150114
TANG Xin-qi1,2,ZHANG Zheng-feng1,YANG Jun1*
Received:
2014-04-17
Revised:
2015-01-11
Online:
2015-03-05
Published:
2015-03-05
About author:
*Corresponding author:YANG Jun, Tel: +86-27-87199723, E-mail: yangjun@wipm.ac.cn.
Supported by:
国家自然科学基金资助项目(21075133, 21173259).
CLC Number:
TANG Xin-qi1,2,ZHANG Zheng-feng1,YANG Jun1*. Heating of Biological Samples in Studies of MAS Solid-State NMR[J]. Chinese Journal of Magnetic Resonance, 2015, 32(1): 123-140.
[1] ZHANG Zhen-feng(张正逢), Yang Jun(杨俊). Solid-state NMR studies on amyloid fibrils: recent progresses(固体核磁共振研究淀粉样蛋白纤维的进展)[J]. Chinese J Magn Reson(波谱学杂志), 2013, 30(2): 157-174. [2] Fu Ri-qiang(傅日强). High-resolution solid-state NMR spectroscopy of membrane bound proteins and peptides aligned in hydrated lipids(水化磷脂层中蛋白质和多肽的高分辨固体核磁共振波谱学)[J]. Chinese J Magn Reson(波谱学杂志). 2009, 26(4): 437-456. [3] Ladizhansky V, Vega S. Polarization transfer dynamics in Lee–Goldburg cross polarization nuclear magnetic resonance experiments on rotating solids[J]. J Chem Phys, 2000, 112(16): 7 158-7 168.[ 4] Dvinskikh S V, Zimmermann H, Maliniak A, et al. Heteronuclear dipolar recoupling in liquid crystals and solids by PISEMA-type pulse sequences[J]. J Magn Reson, 2003, 164(1): 165-170. [5] Oldfield E, Meadows M, Rice D, et al. Spectroscopic studies of specifically deuterium labeled membrane systems. Nuclear magnetic resonance investigation of the effects of cholesterol in model systems[J]. Biochemistry, 1978, 17(14): 2 727-2 740. [6] Stringer J A, Bronnimann C E, Mullen C G, et al. Reduction of RF-induced sample heating with a scroll coil resonator structure for solid-state NMR probes[J]. J Magn Reson, 2005, 173(1): 40-48. [7] Wu Z, Ding S. Prevention of spinning induced sample deterioration during long time solid-state NMR experiments of quadrupolar spin systems[J]. Solid State Nucl Magn Reson, 2009, 35(4): 214-216. [8] Wang A C, Bax A. Minimizing the effects of radio-frequency heating in multidimensional NMR experiments[J]. J Biomol NMR, 1993, 3(6): 715-720. [9] Kugel H. Improving the signal-to-noise ratio of NMR signals by reduction of inductive losses[J]. J Magn Reson, 1991, 91(1): 179-185. [10] Led J J, Petersen S B. Heating effects in 13C NMR spectroscopy on aqueous solutions caused by proton noise decoupling at high frequencies[J]. J Magn Reson, 1978, 32(1): 1-17. [11] Brus, J. Heating of samples induced by fast magic-angle spinning[J]. Solid State Nucl Magn Reson, 2000, 16(3): 151-160. [12] Thurber K R, Tycko R. Measurement of sample temperatures under magic-angle spinning from the chemical shift and spin-lattice relaxation rate of 79Br in KBr powder[J]. J Magn Reson, 2009, 196(1): 84-87. [13] Dillmann B, Elbayed K, Zeiger H, et al. A novel low-E field coil to minimize heating of biological samples in solid-state multinuclear NMR experiments[J]. J Magn Reson, 2007, 187(1): 10-18. [14] Neue G, Dybowski C. Determining temperature in a magic-angle spinning probe using the temperature dependence of the isotropic chemical shift of lead nitrate[J]. Solid State Nucl Magn Reson, 1997, 7(4): 333-336. [15] Grimmer A R, Kretschmer A, Cajipe V B. Influence of magic angle spinning on sample temperature[J]. Magn Reson Chem, 1997, 35(2): 86-90. [16] Dvinskikh S V, Castro V, Sandström D. Heating caused by radiofrequency irradiation and sample rotation in 13C magic angle spinning NMR studies of lipid membranes[J]. Magn Reson Chem, 2004, 42(10): 875-881. [17] Mildner T, Ernst H, Freude D. 207Pb NMR detection of spinning-induced temperature gradients in MAS rotors[J]. Solid State Nucl Magn Reson, 1995, 5(3): 269-271. [18] Langer B, Schnell I, Spiess H W, et al. Temperature calibration under ultrafast MAS conditions[J]. J Magn Reson, 1999, 138(1): 182-186. [19] Fowler D J, Harris M J, Thompson L K. Heat management strategies for solid-state NMR of functional proteins[J]. J Magn Reson, 2012, 222: 112-118. [20] Haw J F, Campbell G C, Crosby R C. Experimental considerations in variable-temperature solid-state nuclear magnetic resonance with cross polarization and magic-angle spinning[J]. Anal Chem, 1986, 58(14): 3 172-3 177. [21] Chattah A K, Cucchietti F M, Hologne M, et al. Radiofrequency-induced temperature increase as a function of cross polarization contact time in 8CB[J]. Magn Reson Chem, 2002, 40(12): 772-776. [22] Fung B. The effect of radiofrequency heating in 13C NMR studies of liquid crystals[J]. J Magn Reson, 1990, 86(1): 160-163. [23] Shellock F G. Radiofrequency energy-induced heating during MR procedures: A Review[J]. J Magn Reson Imaging, 2000, 12(1): 30-36. [24] d’Espinose de Lacaillerie J B, Jarry B, Pascui, et al. “Cooking the sample”: Radiofrequency induced heating during solid-state NMR experiments[J]. Solid State Nucl Magn Reson, 2005, 28(2): 225-232. [25] Zhou Z, Sayer B G, Stark R E, et al. High-resolution magic-angle spinning 1H nuclear magnetic resonance studies of lipid dispersions using spherical glass ampoules[J]. Chem Phys Lipids, 1997, 90(1-2): 45-53. [26] Nicholls A W, Mortishire-Smith R J. Temperature calibration of a high-resolution magic-angle spinning NMR probe for analysis of tissue samples[J]. Magn Reson Chem, 2001, 39(12): 773-776. [27] Marassi F M, Crowell K J. Hydration-optimized oriented phospholipid bilayer samples for solid-state NMR structural studies of membrane proteins[J]. J Magn Reson, 2003, 161(1): 64-69.[28] van Wüllen L, Schwering G, Naumann E, et al. MAS NMR at very high temperatures[J]. Solid State Nucl Magn Reson, 2004, 26(2): 84-86. [29] Limbach H H, Hennig J, Kendrick R, et al. Proton-transfer kinetics in solids: tautomerism in free base porphines by nitrogen-15 CPMAS NMR[J]. J Am Chem Soc, 1984, 106(14): 4 059-4 060. [30] Haw J F, Crook R A, Crosby R C. Solid-solid phase transitions for temperature calibration in magic-angle spinning[J]. J Magn Reson, 1986, 66(3): 551-554. [31] Bjorholm T, Jakobsen H J. 31P MAS NMR of P4S3. Crystalline-to-plastic phase transition induced by MAS in a double air-bearing stator[J]. J Magn Reson, 1989, 84(1): 204-211. [32] Anderson-Altmann K L, Grant D M. A solid-state 15N NMR study of the phase transitions in ammonium nitrate[J]. J Phys Chem, 1993, 97(42): 11 096-11 102. [33] Klymachyov A N, Dalal N S. Squaric acid as an internal standard for temperature measurements in 13C MAS NMR[J]. Solid State Nucl Magn Reson, 1996, 7(2): 127-134. [34] Bielecki A, Burum D P. Temperature dependence of 207Pb MAS spectra of solid lead nitrate. An accurate, sensitive thermometer for variable-temperature MAS[J]. J Magn Reson, 1995, 116(2): 215-220. [35] Ferguson D B, Haw J F. Transient methods for in situ NMR of reactions on solid catalysts using temperature jumps[J]. Anal Chem, 1995, 67(18): 3 342-3 348. [36] Aliev A E, Harris K D. Simple technique for temperature calibration of a MAS probe for solid‐state NMR spectroscopy[J]. Magn Reson Chem, 1994, 32(6): 366-369. [37] Aliev A E, Harris K D M, Apperley D C. High-resolution solid-state 13C and 29Si NMR investigations of the dynamic properties of tetrakis (trimethylsilyl) silane[J]. J Chem Soc, Chem Commun, 1993, (3): 251-253. [38] Campbell G C, Crosby R C, Haw J F. 13C Chemical shifts which obey the Curie Law in CP/MAS NMR spectra. The first CP/MAS NMR chemical-shift thermometer[J]. J Magn Reson, 1986, 69(1): 191-195. [39] Grey C P, Cheetham A K, Dobson C M. Temperature-dependent solid-state 119Sn MAS NMR of Nd2Sn2O7, Sm2Sn2O7, and Y1.8Sm0.2Sn2O7. Three sensitive chemical-shift thermometers[J]. J Magn Reson, 1993, 101(3): 299-306. [40] Vanmoorsel G J M P, Vaneck E R H, Grey C P. Pr2Sn2O7 and Sm2Sn2O7 as high-temperature shift thermometers in variable-temperature 119Sn MAS NMR[J]. J Magn Reson, 1995, 113(2): 159-163. [41] Pan H, Gerstein B C. NMR of 31P in (VO)2P2O7 as an internal temperature standard in high-temperature NMR[J]. J Magn Reson, 1991, 92(3): 618-619. [42] Massiot D, Bessada C, Echegut P, et al. High temperature NMR study of lithium sodium sulfate[J]. Solid State Ionics, 1990, 37(2-3): 223-229. [43] Aliev A E, Harris K D M. Simple technique for temperature calibration of a MAS probe for solid-state NMR spectroscopy[J]. Magn Reson Chem, 1994, 32(6): 366-369. [44] Li C G, Mo Y M, Hu J, et al. Analysis of RF heating and sample stability in aligned static solid-state NMR spectroscopy[J]. J Magn Reson, 2006, 180(1): 51-57. [45] Chen Y, Zhang Z, Tang X, et al. Conformation and topology of diacylglycerol kinase in E. coli membranes revealed by solid-state NMR spectroscopy[J]. Angew Chem Int Edit, 2014, 53(22): 5 624-5 628. [46] McDermott A, Polenova T, Bockmann A, et al. Partial NMR assignments for uniformly (13C, 15N)-enriched BPTI in the solid state[J]. J Biomol NMR, 2000, 16(3): 209-219. [47] Mehring M. High Resolution NMR in Solids[M]. Springer, 1976. [48] Detken A, Hardy E H, Ernst M, et al. Simple and efficient decoupling in magic-angle spinning solid-state NMR: the XiX scheme[J]. Chem Phys Lett, 2002, 356(3-4): 298-304. [49] Bennett A E, Rienstra C M, Auger M, et al. Heteronuclear decoupling in rotating solids[J]. J Chem Phys, 1995, 103(16): 6 951-6 958. [50] Fung B M, Khitrin A K, Ermolaev K. An improved broadband decoupling sequence for liquidcrystals and solids[J]. J Magn Reson, 2000, 142(1): 97-101. [51] Meier B H. Cross polarization under fast magic angle spinning: thermodynamical considerations[J]. Chem Phys Lett, 1992, 188(3-4): 201-207. [52] Laage S, Marchetti A, Sein J, et al. Band-selective 1H-13C cross-polarization in fast magic angle spinning solid-state NMR spectroscopy[J]. J Am Chem Soc, 2008, 130(51): 17 216-17 217. [53] Ernst M, Samoson A, Meier B H. Low-power decoupling in fast magic-angle spinning NMR[J]. Chem Phys Lett, 2001, 348(3-4): 293-302. [54] Laage S, Sachleben J R, Steuernagel S, et al. Fast acquisition of multi-dimensional spectra in solid-state NMR enabled by ultra-fast MAS[J]. J Magn Reson, 2009, 196(2): 133-141. [55] Nielsen A B, Straasø L A, Nieuwkoop A J, et al. Broadband heteronuclear solid-state NMR experiments by exponentially modulated dipolar recoupling without decoupling[J]. J Phys Chem Lett, 2010, 1(13): 1 952-1 956. [56] Jaroniec C P, Filip C, Griffin R G. 3D TEDOR NMR experiments for the simultaneous measurement of multiple carbonnitrogen distances in uniformly 13C, 15N-labeled solids[J]. J Am Chem Soc, 2002, 124(36): 10 728-10 742. [57] Lewandowski J R, De Paëpe G, Griffin R G. Proton assisted insensitive nuclei cross polarization[J]. J Am Chem Soc, 2007, 129(4): 728-729. [58] Gor’kov P L, Chekmenev E Y, Li C, et al. Using Low-E resonators to reduce RF heating in biological samples for static solid-state NMR up to 900 MHz [J]. J Magn Reson, 2007, 185(1): 77-93. [59] Gor’kov P L, Witter R, Chekmenev E Y, et al. Low-E probe for 19F-1H NMR of dilute biological solids[J]. J Magn Reson, 2007, 189(2): 182-189. [60] Froncisz W, Hyde J S. The loop-gap resonator: a new microwave lumped circuit ESR sample structure[J]. J Magn Reson, 1982, 47(3): 515-521. [61] Alecci M, Nicholson I, Lurie D J. A novel multiple-tuned radiofrequency loop–gap resonator for use in PEDRI[J]. J Magn Reson, 1996, 110(1): 82-86. [62] Cory D G, Lewandowski J T, Maas W E. INMR Probe for CP2: USA, 5, 539, 315[P]. 1996. [63] Tang M, Comellas G, Mueller L, et al. High resolution 13C-detected solid-state NMR spectroscopy of a deuterated protein[J]. J Biomol NMR, 2010, 48(2): 103-111. [64] Nadaud P S, Helmus J J, Kall S L, et al. Paramagnetic ions enable tuning of nuclear relaxation rates and provide long-range structural restraints in solid-state NMR of proteins[J]. J Am Chem Soc, 2009, 131(23): 8 108-8 120. [65] Lopez J J, Kaiser C, Asami S, et al. Higher sensitivity through selective 13C excitation in solid-state NMR spectroscopy[J]. J Am Chem Soc, 2009, 131(44): 15 970-15 971. [66] Thurber K R, Yau W M, Tycko R. Low-temperature dynamic nuclear polarization at 9.4 T with a 30 mW microwave source[J]. J Magn Reson, 2010, 204(2): 303-313. |
[1] | XU Xiao-jun, WANG Shen-lin. Probing Membrane Protein Interactions by 19F Solid-State NMR [J]. Chinese Journal of Magnetic Resonance, 2019, 36(2): 238-251. |
[2] | CHEN Hai-yan, ZHAO Shi-long, LI Xiao-nan, LIU Guo-qiang, HU Li-li, LIU Tao. B1 Mapping on Low-Field Permanent Magnet MRI Scanner [J]. Chinese Journal of Magnetic Resonance, 2018, 35(4): 498-504. |
[3] | ZHU Yun-feng, HE Wei, HE Chuan-hong, WANG Yi, QI Tian-hao, CHEN Bai-bing, XU Zheng. A Nuclear Magnetic Resonance Radiofrequency Pulse Transmitter Based on Digital Modulation Technology [J]. Chinese Journal of Magnetic Resonance, 2018, 35(3): 318-327. |
[4] | GE Yu-wei, LIU Mai-li, GAN Zhe-hong, LI Cong-gang. Measurements of Proton Chemical Shift Anisotropy [J]. Chinese Journal of Magnetic Resonance, 2018, 35(2): 255-267. |
[5] | JIANG Ting-ting, FU Xiao-bin, WU Jin-ze, WANG Jia-chen, YAO Ye-feng, ZHOU Bing. Structure and Dynamics of Polymer-Ceramic Interface in Li1.5Al0.5Ge1.5P3O12/Polyether Solid Electrolyte:A Solid-State NMR Study [J]. Chinese Journal of Magnetic Resonance, 2017, 34(4): 429-438. |
[6] | SUN Yi, CHEN Yan-ke, LI Jian-ping, ZHAO Yong-xiang, YANG Jun. Efficiency of Double Cross Polarization in Magic-Angle Spinning Solid-State NMR Studies on Membrane Proteins [J]. Chinese Journal of Magnetic Resonance, 2017, 34(3): 257-265. |
[7] | HE Gang, WANG Wei-min. A Multi-Channel Radiofrequency Transmitter for High-Field MRI [J]. Chinese Journal of Magnetic Resonance, 2017, 34(3): 338-346. |
[8] | LI Dong-bei, XU Shuai, YU Zhi-wu. Application of Solid-State NMR to Bone and Bone Biomaterials [J]. Chinese Journal of Magnetic Resonance, 2017, 34(1): 115-129. |
[9] | PENG Yong-jin, SUN Ping-chuan, LI Bao-hui. Dynamic Evolution in PVPh/PEO Blend Studied by Solid-State NMR [J]. Chinese Journal of Magnetic Resonance, 2016, 33(2): 188-197. |
[10] | HAN Ming-yue,ZHENG Hui,HU Bing-wen*,YANG Guang*. Compressed Sensing Reconstruction with Iterative Soft Thresholding for Two-Dimensional Solid-State NMR Spectra with Broad Peaks [J]. Chinese Journal of Magnetic Resonance, 2015, 32(4): 551-562. |
[11] | YANG Bao-lian*. Future of Ultra High Field MRI in Basic Research and Clinical Applications [J]. Chinese Journal of Magnetic Resonance, 2015, 32(4): 707-714. |
[12] | XU Wei-jing,LIU Qing-hua,HU Bing-wen*,CHEN Qun. Structures of Crystalline Poly(ethyl oxide)/LiAsF6 Complexes Determined by Solid-State High-Resolution 13C Nuclear Magnetic Resonance [J]. Chinese Journal of Magnetic Resonance, 2015, 32(3): 399-408. |
[13] | DING Li-hong1,2,LIU Xiao-long2,WANG Qiang2,LIU Wen-tao1,ZHU Cheng-shen1,ZHENG An-min2,DENG Feng2*. Solid-State NMR Studies of TBA3[VW5O19] and TBA4[PVW11O40] [J]. Chinese Journal of Magnetic Resonance, 2015, 32(3): 409-418. |
[14] | ZHANG Shu-lin1,2,3,CHANG Yan1,YANG Xiao-dong1*. Optimization of Limited Amplitude Radiofrequency Pulse with Variance Evaluation [J]. Chinese Journal of Magnetic Resonance, 2015, 32(3): 462-469. |
[15] | XIAO Ting,YAO Ye-feng*. Local and Collective Chain Motions in Semi-Crystalline Polyethylenes—A Solid-State NMR Approach [J]. Chinese Journal of Magnetic Resonance, 2015, 32(2): 208-227. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||