1 |
MASCAL M Chemicals from biobutanol: technologies and markets[J]. Biofuel Bioprod Bior, 2012, 6 (4): 483- 493.
doi: 10.1002/bbb.1328
|
2 |
TRINDADE W R D, DOS SANTOS R G Review on the characteristics of butanol, its production and use as fuel in internal combustion engines[J]. Renew Sust Energ Rev, 2017, 69, 642- 651.
doi: 10.1016/j.rser.2016.11.213
|
3 |
VARGAS J M, MORELATO L H T, ORTEGA J O, et al Upgrading 1-butanol to unsaturated, carbonyl and aromatic compounds: a new synthesis approach to produce important organic building blocks[J]. Green Chem, 2020, 22 (8): 2365- 2369.
doi: 10.1039/D0GC00254B
|
4 |
JOHN M, ALEXOPOULOS K, REYNIERS M F, et al First-principles kinetic study on the effect of the zeolite framework on 1-butanol dehydration[J]. ACS Catal, 2016, 6 (7): 4081- 4094.
doi: 10.1021/acscatal.6b00708
|
5 |
PALLA V C S, SHEE D, MAITY S K Conversion of n-butanol to gasoline range hydrocarbons, butylenes and aromatics[J]. Appl Catal A-Gen, 2016, 526, 28- 36.
doi: 10.1016/j.apcata.2016.07.026
|
6 |
JOHN M, ALEXOPOULOS K, REYNIERS M F, et al Mechanistic insights into the formation of butene isomers from 1-butanol in H-ZSM-5: DFT based microkinetic modelling[J]. Catal Sci Technol, 2017, 7 (5): 1055- 1072.
doi: 10.1039/C6CY02474B
|
7 |
PALLA V C S, SHEE D, MAITY S K Production of aromatics from n-butanol over H-ZSM-5, H-beta, and gamma-Al2O3: Role of silica/alumina mole ratio and effect of pressure[J]. ACS Sustain Chem Eng, 2020, 8 (40): 15230- 15242.
doi: 10.1021/acssuschemeng.0c04888
|
8 |
MAKAROVA M A, PAUKSHTIS E A, THOMAS J M, et al Dehydration of n-butanol on zeolite H-ZSM-5 and amorphous aluminosilicate-detailed mechanistic study and the effect of pore confinement[J]. J Catal, 1994, 149 (1): 36- 51.
doi: 10.1006/jcat.1994.1270
|
9 |
JOHN M, ALEXOPOULOS K, REYNIERS M F, et al Reaction path analysis for 1-butanol dehydration in H-ZSM-5 zeolite: Ab initio and microkinetic modeling[J]. J Catal, 2015, 330, 28- 45.
doi: 10.1016/j.jcat.2015.07.005
|
10 |
PHUNG T K, HERNANDEZ L P, LAGAZZO A, et al Dehydration of ethanol over zeolites, silica alumina and alumina: Lewis acidity, Bronsted acidity and confinement effects[J]. Appl Catal A-Gen, 2015, 493, 77- 89.
doi: 10.1016/j.apcata.2014.12.047
|
11 |
GUNST D, ALEXOPOULOS K, VAN DER BORGHT K, et al Study of butanol conversion to butenes over H-ZSM-5: Effect of chemical structure on activity, selectivity and reaction pathways[J]. Appl Catal A-Gen, 2017, 539, 1- 12.
doi: 10.1016/j.apcata.2017.03.036
|
12 |
SMIT B, MAESEN T L M Towards a molecular understanding of shape selectivity[J]. Nature, 2008, 451 (7179): 671- 678.
doi: 10.1038/nature06552
|
13 |
SMIT B, MAESEN T L M Molecular simulations of zeolites: Adsorption, diffusion, and shape selectivity[J]. Chem Rev, 2008, 108 (10): 4125- 4184.
doi: 10.1021/cr8002642
|
14 |
MOLINER M, MARTINEZ C, CORMA A Multipore zeolites: Synthesis and catalytic applications[J]. Angew Chem Int Edit, 2015, 54 (12): 3560- 3579.
doi: 10.1002/anie.201406344
|
15 |
ZHONG J W, HAN J F, WEI Y X, et al Catalysts and shape selective catalysis in the methanol-to-olefin (MTO) reaction[J]. J Catal, 2021, 396, 23- 31.
doi: 10.1016/j.jcat.2021.01.027
|
16 |
OLSBYE U, SVELLE S, BJORGEN M, et al Conversion of methanol to hydrocarbons: How zeolite cavity and pore size controls product selectivity[J]. Angew Chem Int Edit, 2012, 51 (24): 5810- 5831.
doi: 10.1002/anie.201103657
|
17 |
CHU Y, JI P, YI X, et al Strong or weak acid, which is more efficient for Beckmann rearrangement reaction over solid acid catalysts[J]. Catal Sci Technol, 2015, 5 (7): 3675- 3681.
doi: 10.1039/C5CY00619H
|
18 |
高树树, 徐舒涛, 魏迎旭, 等 固体核磁共振技术在甲醇制烯烃反应中的应用[J]. 波谱学杂志, 2021, 38 (4): 433- 447.
|
|
GAO S S, XU S T, WEI Y X, et al Applications of solid-state nuclear magnetic resonance spectroscopy in methanol-to-olefins reaction[J]. Chinese J Magn Reson, 2021, 38 (4): 433- 447.
|
19 |
杨以宁, 王雪路, 姚叶峰 原位核磁共振技术研究反应环境对光催化甲醇重整过程的影响[J]. 波谱学杂志, 2020, 37 (1): 104- 113.
|
|
YANG Y N, WANG X L, YAO Y F The effects of reaction environment on photocatalytic methanol reforming studied by operando nuclear magnetic resonance spectroscopy[J]. Chinese J Magn Reson, 2020, 37 (1): 104- 113.
|
20 |
ATKINS M P. Process for the production of olefins: WO, 21139[P]. 1993-10-28.
|
21 |
MADEIRA F F, GNEP N S, MAGNOUX P, et al Ethanol transformation over HFAU, HBEA and HMFI zeolites presenting similar Bronsted acidity[J]. Appl Catal A-Gen, 2009, 367 (1-2): 39- 46.
doi: 10.1016/j.apcata.2009.07.033
|
22 |
MADEIRA F F, BEN TAYEB K, PINARD L, et al Ethanol transformation into hydrocarbons on ZSM-5 zeolites: Influence of Si/Al ratio on catalytic performances and deactivation rate. Study of the radical species role[J]. Appl Catal A-Gen, 2012, 443, 171- 180.
|
23 |
NGUYEN T M, LEVANMAO R Conversion of ethanol in aqueous-solution over ZSM-5 Zeolites: Study of the reaction network[J]. Appl Catal, 1990, 58 (1): 119- 129.
doi: 10.1016/S0166-9834(00)82282-4
|
24 |
SUN J, WANG Y Recent advances in catalytic conversion of ethanol to chemicals[J]. ACS Catal, 2014, 4 (4): 1078- 1090.
doi: 10.1021/cs4011343
|
25 |
MENTZEL U V, SHUNMUGAVEL S, HRUBY S L, et al High yield of liquid range olefins obtained by converting i-propanol over zeolite H-ZSM-5[J]. J Am Chem Soc, 2009, 131 (46): 17009- 17013.
doi: 10.1021/ja907692t
|
26 |
ZHANG D Z, AL-HAJRI R, BARRI S A I, et al One-step dehydration and isomerisation of n-butanol to iso-butene over zeolite catalysts[J]. Chem Commun, 2010, 46 (23): 4088- 4090.
doi: 10.1039/c002240c
|
27 |
ZHANG D Z, BARRI S A I, CHADWICK D n-Butanol to iso-butene in one-step over zeolite catalysts[J]. Appl Catal A-Gen, 2011, 403 (1-2): 1- 11.
doi: 10.1016/j.apcata.2011.05.037
|
28 |
KNöZINGER H, BüHL H, KOCHLOEFL K The dehydration of alcohols on alumina: XIV. Reactivity and mechanism[J]. J Catal, 1972, 24 (1): 57- 68.
doi: 10.1016/0021-9517(72)90007-3
|
29 |
CHEN J R, LI J Z, WEI Y X, et al Spatial confinement effects of cage-type SAPO molecular sieves on product distribution and coke formation in methanol-to-olefin reaction[J]. Catal Commun, 2014, 4636- 40.
|
30 |
WU X Q, XU S T, WEI Y X, et al Evolution of C-C bond formation in the methanol-to-olefins process: From direct coupling to autocatalysis[J]. ACS Catal, 2018, 8 (8): 7356- 7361.
doi: 10.1021/acscatal.8b02385
|
31 |
GUISNET M, COSTAL L, RIBEIRO F R Prevention of zeolite deactivation by coking[J]. J Mol Catal A: Chem, 2009, 305 (1-2): 69- 83.
doi: 10.1016/j.molcata.2008.11.012
|
32 |
HAN J F, LIU Z Q, LI H, et al Simultaneous evaluation of reaction and diffusion over molecular sieves for shape-selective catalysis[J]. ACS Catal, 2020, 10 (15): 8727- 8735.
doi: 10.1021/acscatal.0c02054
|
33 |
ILIAS S, KHARE R, MALEK A, et al A descriptor for the relative propagation of the aromatic- and olefin-based cycles in methanol-to-hydrocarbons conversion on H-ZSM-5[J]. J Catal, 2013, 303, 135- 140.
doi: 10.1016/j.jcat.2013.03.021
|
34 |
WANG C M, WANG Y D, XIE Z K Verification of the dual cycle mechanism for methanol-to-olefin conversion in HSAPO-34: a methylbenzene-based cycle from DFT calculations[J]. Catal Sci Technol, 2014, 4 (8): 2631- 2638.
doi: 10.1039/C4CY00262H
|
35 |
ZHANG W N, ZHI Y C, HUANG J D, et al Methanol to olefins reaction route based on methylcyclopentadienes as critical intermediates[J]. ACS Catal, 2019, 9 (8): 7373- 7379.
doi: 10.1021/acscatal.9b02487
|
36 |
SONG W G, FU H, HAW J F Supramolecular origins of product selectivity for methanol-to-olefin catalysis on H-SAPO-34[J]. J Am Chem Soc, 2001, 123 (20): 4749- 4754.
doi: 10.1021/ja0041167
|
37 |
WANG C, XU J, QI G D, et al Methylbenzene hydrocarbon pool in methanol-to-olefins conversion over zeolite H-ZSM-5[J]. J Catal, 2015, 332, 127- 137.
doi: 10.1016/j.jcat.2015.10.001
|
38 |
YU B W, ZHANG W N, WEI Y X, et al Capture and identification of coke precursors to elucidate the deactivation route of the methanol-to-olefin process over H-SAPO-34[J]. Chem Commun, 2020, 56 (58): 8063- 8066.
doi: 10.1039/D0CC02408B
|
39 |
MUNSON E J, KHEIR A A, LAZO N D, et al In situ solid-state NMR study of methanol-to-gasoline chemistry in zeolite H-ZSM-5[J]. J Phys Chem, 1993, 97 (16): 4248- 4248.
doi: 10.1021/j100118a051
|
40 |
XU S T, ZHENG A M, WEI Y X, et al Direct observation of cyclic carbenium ions and their role in the catalytic cycle of the methanol-to-olefin reaction over chabazite zeolites[J]. Angew Chem Int Edit, 2013, 52 (44): 11564- 11568.
doi: 10.1002/anie.201303586
|
41 |
WANG W, JIAO J, JIANG Y J, et al Formation and decomposition of surface ethoxy species on acidic zeolite Y[J]. Chemphyschem, 2005, 6 (8): 1467- 1469.
doi: 10.1002/cphc.200500262
|
42 |
JIANG Y, HUANG J, REDDY MARTHALA V R, et al In situ MAS NMR–UV/Vis investigation of H-SAPO-34 catalysts partially coked in the methanol-to-olefin conversion under continuous-flow conditions and of their regeneration[J]. Micropor Mesopor Mater, 2007, 105 (1-2): 132- 139.
doi: 10.1016/j.micromeso.2007.05.028
|
43 |
DAI W L, WANG C M, DYBALLA M, et al Understanding the early stages of the methanol-to-olefin conversion on H-SAPO-34[J]. ACS Catal, 2015, 5 (1): 317- 326.
doi: 10.1021/cs5015749
|
44 |
ZHANG W N, ZHANG M Z, XU S T, et al Methylcyclopentenyl cations linking initial stage and highly efficient stage in methanol-to-hydrocarbon process[J]. ACS Catal, 2020, 10 (8): 4510- 4516.
doi: 10.1021/acscatal.0c00799
|
45 |
STEPANOV A G, SIDELNIKOV V N, ZAMARAEV K I In situ 13C solid-state NMR and ex situ GC-MS analysis of the products of tert-butyl alcohol dehydration on H-ZSM-5 zeolite catalyst[J]. Chem-Eur J, 1996, 2 (2): 157- 167.
doi: 10.1002/chem.19960020207
|
46 |
WANG C, WANG Q, XU J, et al Direct detection of supramolecular reaction centers in the methanol-to-olefins conversion over zeolite H-ZSM-5 by 13C-27Al solid-state NMR spectroscopy[J]. Angew Chem Int Ed, 2016, 55 (7): 2507- 2511.
doi: 10.1002/anie.201510920
|