Acta mathematica scientia,Series B ›› 2022, Vol. 42 ›› Issue (4): 1569-1584.doi: 10.1007/s10473-022-0416-1
• Articles • Previous Articles Next Articles
Shangkun WENG, Zihao ZHANG
Received:
2021-03-04
Revised:
2021-05-23
Online:
2022-08-25
Published:
2022-08-23
Contact:
Zihao ZHANG,E-mail:zhangzihao@whu.edu.cn
E-mail:zhangzihao@whu.edu.cn
Supported by:
CLC Number:
Shangkun WENG, Zihao ZHANG. TWO DIMENSIONAL SUBSONIC AND SUBSONIC-SONIC SPIRAL FLOWS OUTSIDE A POROUS BODY[J].Acta mathematica scientia,Series B, 2022, 42(4): 1569-1584.
[1] Bers L, Existence and uniqueness of a subsonic flow past a given profile. Comm Pure Appl Math, 1954, 7:441-504 [2] Chen C, Du L, Xie C, et al. Two dimensional subsonic Euler flows past a wall or a symmetric body. Arch Ration Mech Anal, 2016, 221(2):559-602 [3] Cui D C, Li J. On the existence and stability of 2-D perturbed steady subsonic circulatory flows. Sci China Math, 2011, 54(7):1421-1436 [4] Chen G Q, Dafermos C M, Slemrod M, et al, On two-dimensional sonic-subsonic flow. Commun Math Phys, 2007, 271:635-647 [5] Chen G Q, Frid H, Divergence-measure fields and hyperbolic conservation laws. Arch Rational Mech Anal, 1999, 147:89-118 [6] Chen G Q, Huang F M, Wang T Y. Subsonic-sonic limit of approximate solutions to multidimensional steady Euler equations. Arch Ration Mech Anal, 2016, 219(2):719-740 [7] Courant R, Friedrichs K O. Supersonic Flow and Shock Waves. New York:Interscience Publishers Inc, 1948 [8] Duan B, Weng S. Global smooth axisymmetric subsonic flows with nonzero swirl in an infinitely long axisymmetric nozzle. Z Angew Math Phys, 2018, 69(5):Paper No 135, 17 pp [9] Dong G C, Ou B, Subsonic flows around a body in space. Comm Partial Differential Equations, 1993, 18:355-379 [10] Du L, Xin Z, Yan W, Subsonic flows in a multi-dimensional nozzle. Arch Ration Mech Anal, 2011, 201:965-1012 [11] Du L, Xie C, Xin Z, Steady subsonic ideal flows through an infinitely long nozzle with large vorticity. Commun Math Phys, 2014, 328:327-354 [12] Finn R, Gilbarg D, Asymptotic behavior and uniqueness of plane subsonic flows. Comm Pure Appl Math, 1957, 10:23-63 [13] Finn R, Gilbarg D, Three-dimensional subsonic flows and asymptotic estimates for elliptic partial differential equations. Acta Math, 1957, 98:265-296 [14] Frankl F, Keldysh M, Dieäussere neumann'she aufgabe für nichtlineare elliptische differentialgleichungen mit anwendung auf die theorie der flugel im kompressiblen gas. Bull Acad Sci, 1934, 12:561-697 [15] Gilbarg D, Trudinger N. Elliptic partial differential equations of second order. Second Edition. New York:Springer-Verlag, 1983 [16] Gu X, Wang T Y. On subsonic and subsonic-sonic flows in the infinity long nozzle with general conservatives force. Acta Math Sci, 2017, 37B(3):752-767 [17] Gu X, Wang T Y. On subsonic and subsonic-sonic flows with general conservatives force in exterior domains. arxiv:2001.09300 [18] Huang F M, Wang T Y, Wang Y. On multidimensional sonic-subsonic flow. Acta Math Sci, 2011, 31B(6):2131-2140 [19] Liu L, Yuan H. Steady subsonic potential flows through infinite multi-dimensional largely-open nozzles. Calc Var Partial Differ Equ, 2014, 49(1/8):1-36 [20] Ou B. An irrotational and incompressible flow around a body in space. J Partial Differential Equations, 1994, 7(2):160-170 [21] Shiffman M, On the existence of subsonic flows of a compressible fluid. J Rational Mech Anal, 1952, 1:605-652 [22] Weng S. Subsonic irrotational flows in a two-dimensional finitely long curved nozzle. Z Angew Math Phys, 2014, 65(2):203-220 [23] Weng S, Xin Z, Yuan H, Steady compressible radially symmetric flows with nonzero angular velocity in an annulus. J Differential Equations, 2021, 286:433-454 [24] Weng S, Xin Z, Yuan H. On Some Smooth Symmetric Transonic Flows with Nonzero Angular Velocity and Vorticity. arXiv:2101.00450 [25] Xie C, Xin Z, Global subsonic and subsonic-sonic flows through infinitely long nozzles. Indiana Univ Math J, 2007, 56:2991-3023 [26] Xie C, Xin Z. Global subsonic and subsonic-sonic flows through infinitely long axially symmetric nozzles. J Differential Equations 2010, 248(11):2657-2683 |
[1] | Sijie LIU, Wancheng SHENG. THE STABILITY OF THE DELTA WAVE TO PRESSURELESS EULER EQUATIONS WITH VISCOUS AND FLUX PERTURBATIONS [J]. Acta mathematica scientia,Series B, 2022, 42(4): 1519-1535. |
[2] | Ning-An LAI, Wei XIANG, Yi ZHOU. GLOBAL INSTABILITY OF MULTI-DIMENSIONAL PLANE SHOCKS FOR ISOTHERMAL FLOW [J]. Acta mathematica scientia,Series B, 2022, 42(3): 887-902. |
[3] | Tingting CHEN, Aifang QU, Zhen WANG. EXISTENCE AND UNIQUENESS OF THE GLOBAL L1 SOLUTION OF THE EULER EQUATIONS FOR CHAPLYGIN GAS [J]. Acta mathematica scientia,Series B, 2021, 41(3): 941-958. |
[4] | Weifeng JIANG, Zhen WANG. THE EXISTENCE OF A BOUNDED INVARIANT REGION FOR COMPRESSIBLE EULER EQUATIONS IN DIFFERENT GAS STATES [J]. Acta mathematica scientia,Series B, 2020, 40(5): 1229-1239. |
[5] | Hairong YUAN. TIME-PERIODIC ISENTROPIC SUPERSONIC EULER FLOWS IN ONE-DIMENSIONAL DUCTS DRIVING BY PERIODIC BOUNDARY CONDITIONS [J]. Acta mathematica scientia,Series B, 2019, 39(2): 403-412. |
[6] | Gui-Qiang G. CHEN, Matthew RIGBY. STABILITY OF STEADY MULTI-WAVE CONFIGURATIONS FOR THE FULL EULER EQUATIONS OF COMPRESSIBLE FLUID FLOW [J]. Acta Mathematica Scientia, 2018, 38(5): 1485-1514. |
[7] | Fei HOU. ON THE GLOBAL EXISTENCE OF SMOOTH SOLUTIONS TO THE MULTI-DIMENSIONAL COMPRESSIBLE EULER EQUATIONS WITH TIME-DEPENDING DAMPING IN HALF SPACE [J]. Acta mathematica scientia,Series B, 2017, 37(4): 949-964. |
[8] | Xumin GU, Tian-Yi WANG. ON SUBSONIC AND SUBSONIC-SONIC FLOWS IN THE INFINITY LONG NOZZLE WITH GENERAL CONSERVATIVES FORCE [J]. Acta mathematica scientia,Series B, 2017, 37(3): 752-767. |
[9] | Wentao CAO, Feimin HUANG, Tianhong LI, Huimin YU. GLOBAL ENTROPY SOLUTIONS TO AN INHOMOGENEOUS ISENTROPIC COMPRESSIBLE EULER SYSTEM [J]. Acta mathematica scientia,Series B, 2016, 36(4): 1215-1224. |
[10] | Yu CHEN, Yi ZHOU. SIMPLE WAVES OF THE TWO DIMENSIONAL COMPRESSIBLE FULL EULER EQUATIONS [J]. Acta mathematica scientia,Series B, 2015, 35(4): 855-875. |
[11] | ZHANG Ying-Hui, WU Guo-Chun. GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR FOR THE 3D COMPRESSIBLE NON–ISENTROPIC EULER EQUATIONS WITH DAMPING [J]. Acta mathematica scientia,Series B, 2014, 34(2): 424-434. |
[12] | Maria Schonbek. NONEXISTENCE OF PSEUDO-SELF-SIMILAR SOLUTIONS TO INCOMPRESSIBLE EULER EQUATIONS [J]. Acta mathematica scientia,Series B, 2011, 31(6): 2305-2312. |
[13] | XIE Hua-Chao, ZI Rui-Zhao. REMARKS ON THE NONLINEAR INSTABILITY OF INCOMPRESSIBLE EULER EQUATIONS [J]. Acta mathematica scientia,Series B, 2011, 31(5): 1877-1888. |
[14] | YANG Xiu-Hui. QUASI-NEUTRAL LIMIT OF THE BIPOLAR NAVIER-STOKES-POISSON SYSTEM [J]. Acta mathematica scientia,Series B, 2011, 31(4): 1272-1280. |
[15] | John W. Grove. PRESSURE-VELOCITY EQUILIBRIUM HYDRODYNAMIC MODELS [J]. Acta mathematica scientia,Series B, 2010, 30(2): 563-594. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 6
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 77
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|