[1] Alvarez A.Linearized Crank-Nicholson schems for nonlinear Dirac equations. J Comput Phys, 1992, 99(2): 348-350 [2] Alvarez A, Kuo P Y, Vazquez L.The numerical study of a nonlinear one-dimensional Dirac model. Appl Math Comput, 1983, 13(1/2): 1-15 [3] Arrighi P, Nesme V, Forets M. The Dirac equation as a quantum walk: higher dimensions, observational convergence. J Phys A, 2014, 47(46): Art 465302 [4] Bony J M. Solutions globales bornées pour les modèles discrets de l'équation de Boltzmann, en dimension $1$ d'espace // Journées "Équations aux derivées partielles'': Held in Saint Jean de Monts. Palaiseau: École Polytechnique, 1987: Exp No XVI [5] Bournaveas N, Zouraris G E.Theory and numerical approximations for a nonlinear $1+1$ Dirac system. ESAIM Math Model Numer Anal, 2012, 46(4): 841-874 [6] Bressan A.Hyperbolic Systems of Conservation Laws: The One-dimensional Cauchy Problem. Oxford: Oxford University Press, 2000 [7] Cacciafesta F.Global small solutions to the critical radial Dirac equation with potential. Nonlinear Anal, 2011, 74(17): 6060-6073 [8] Candy T.Global existence for an $L^2$ critical nonlinear Dirac equation in one dimension. Adv Differential Equations, 2011, 16(7/8): 643-666 [9] Contreras A, Pelinovsky D E, Shimabukuro Y.$L^2$ orbital stability of Dirac solitons in the massive Thirring model. Comm Partial Differential Equations, 2016, 41(2): 227-255 [10] Dafermos C M.Hyperbolic Conservation Laws in Continuum Physics. Berlin: Springer-Verlag, 2010 [11] Delgado V.Global solutions of the Cauchy problem for the (classical) coupled Maxwell-Dirac and other nonlinear Dirac equations in one space dimension. Proc Amer Math Soc, 1978, 69(2): 289-296 [12] Dellar P J.Quantum lattice algorithms: similarities and connections to some classic finite difference algorithms. ESAIM Proc Surveys, 2015, 52: 76-104 [13] Escobedo M, Vega L.A semilinear Dirac equation in $H^s(R^3)$ for $s>1$. SIAM J Math Anal, 1997, 28(2): 338-362 [14] Glimm J.Solutions in the large for nonlinear hyperbolic systems of equations. Comm Pure Appl Math, 1965, 18: 697-715 [15] Gosse L.A well-balanced and asymptotic-preserving scheme for the one-dimensional linear Dirac equation. BIT, 2015, 55(2): 433-458 [16] Gross D J, Neveu A.Dynamical symmetry breaking in asymptotically free field theories. Phys Rev D, 1974, 10(10): 3235-3253 [17] Ha S Y, Tzavaras A E.Lyapunov functionals and $L^1$-stability for discrete velocity Boltzmann equations. Comm Math Phys, 2003, 239(1/2): 65-92 [18] Huh H.Global strong solution to the Thirring model in critical space. J Math Anal Appl, 2011, 381(2): 513-520 [19] Huh H.Global solutions to Gross-Neveu equation. Lett Math Phys, 2013, 103(8): 927-931 [20] Huh H, Moon B.Low regularity well-posedness for Gross-Neveu equations. Commun Pure Appl Anal, 2015, 14(5): 1903-1913 [21] Junk M, Yang Z.$L_2$ convergence of the lattice Boltzmann method for one dimensional convection-diffusion-reaction equations. Commun Comput Phys, 2015, 17(5): 1225-1245 [22] Junk M, Yong W.Weighted $L^2$ stability of the lattice Boltzmann method. SIAM J Numer Anal, 2009, 47(3): 1651-1665 [23] Lapitski D, Dellar P J.Convergence of a three-dimensional quantum lattice Boltzmann scheme towards solutions of the Dirac equation. Phil Trans R Soc A, 2011, 369(1944): 2155-2163 [24] Maeda M. Asymptotic stability of small bound state of nonlinear quantum walks. Phys D, 2022, 439: Art 133408 [25] Maeda M, Suzuki A. Continuous limits of linear and nonlinear quantum walks. Rev Math Phys, 2020, 32(4): Art 2050008 [26] Palpacelli S, Romatschke P, Succi S. One-dimensional quantum lattice {B}oltzmann scheme for the nonlinear {D}irac equation. Internat J Modern Phys C, 2013, 24(12): Art 1340001 [27] Pelinovsky D.Survey on global existence in the nonlinear Dirac equations in one dimension// Ozawa T, Sugimoto M. Harmonic Analysis and Nonlinear Partial Differential [28] Equations: Papers from the RIMS Symposium held at Kyoto University. Kyoto: RIMS, 2011: 37-50Selberg S, Tesfahun A. Low regularity well-posedness for some nonlinear Dirac equations in one space dimension. Differential Integral Equations, 2010, 23(3/4): 265-278 [29] Succi S.The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. New York: Clarendon Press, 2001 [30] Succi S, Benzi R.Lattice Boltzmann equation for quantum mechanics. Phys D, 1993, 69(3/4): 327-332 [31] Thirring W E.A soluble relativistic field theory. Ann Phys, 1958, 3: 91-112 [32] Zhang Y.Global strong solution to a nonlinear Dirac type equation in one dimension. Nonlinear Anal, 2013, 80: 150-155 [33] Zhang Y, Zhao Q.Global solution to nonlinear Dirac equation for Gross-Neveu model in $1+1$ dimensions. Nonlinear Anal, 2015, 118: 82-96 |