Acta mathematica scientia,Series B ›› 2023, Vol. 43 ›› Issue (4): 1645-1667.doi: 10.1007/s10473-023-0413-z
Previous Articles Next Articles
Jinxia CEN1, Stanis law MIGÓRSKI2, Emilio VILCHES3, Shengda ZENG4,5,6,†
Received:
2021-11-15
Revised:
2022-05-27
Published:
2023-08-08
Contact:
†Shengda ZENG, E-mail: About author:
Jinxia CEN, E-mail: jinxiacen@163.com; Stanis law MIGÓRSKI, E-mail: stanislaw.migorski@uj.edu.pl; Emilio VILCHES, E-mail: emilio.vilches@uoh.cl
Supported by:
Jinxia CEN, Stanis law MIGÓRSKI, Emilio VILCHES, Shengda ZENG. TIME PERIODIC SOLUTIONS TO THE EVOLUTIONARY OSEEN MODEL FOR A GENERALIZED NEWTONIAN INCOMPRESSIBLE FLUID∗[J].Acta mathematica scientia,Series B, 2023, 43(4): 1645-1667.
[1] Aubin J P, Cellina A.Differential Inclusions: Set-Valued Maps and Viability Theory. Berlin: Springer-Verlag, 1984 [2] Barboteu M, Bartosz K, Han W, Janiczko T. Numerical analysis of a hyperbolic hemivariational inequality arising in dynamic contact. SIAM J Numer Anal, 2015, 53: 527-550 [3] Berkovits J, Mustonen V. Monotonicity methods for nonlinear evolution equations. Nonlinear Anal, 1966, 27: 1397-1405 [4] Brézis H. Functional Analysis, Sobolev Spaces and Partial Differential Equations. New York: Springer, 2011 [5] Carl S, Le V K, Motreanu D.Nonsmooth Variational Problems and Their Inequalities. New York: Springer, 2007 [6] Clarke F H.Optimization and Nonsmooth Analysis. New York: Wiley, 1983 [7] Denkowski Z, Migórski S, Papageorgiou N S. An Introduction to Nonlinear Analysis: Theory. Boston: Kluwer, 2003 [8] Denkowski Z, Migórski S, Papageorgiou N S. An Introduction to Nonlinear Analysis: Applications. Boston: Kluwer, 2003 [9] Djoko J K, Lubuma J M. Analysis of a time implicit scheme for the Oseen model driven by nonlinear slip boundary conditions. J Math Fluid Mech, 2018, 18: 717-730 [10] Dudek S, Kalita P, Migórski S. Steady flow of generalized Newtonian fluid with multivalued rheology and nonmonotone friction law. Comput Math Appl,2017, 74: 1813-1825 [11] Fang C J, Han W, Migórski S, Sofonea M. A class of hemivariational inequalities for nonstationary Navier-Stokes equations. Nonlinear Anal,2016, 31: 257-276 [12] Fujita H. A mathematical analysis of motions of viscous incompressible fluid under leak or slip boundary conditions. RIMS Kokyuroku, 1994, 888: 199-216 [13] Fujita H. Non stationary Stokes flows under leak boundary conditions of friction type. J Comput Math, 2001, 19: 1-8 [14] Han Y, Huang N J, Lu J, Xiao Y B. Existence and stability of solutions to inverse variational inequality problems. Appl Math Mech, 2017, 38: 749-764 [15] Han W, Sofonea M, Barboteu M. Numerical analysis of elliptic hemivariational inequalities. SIAM J Numer Anal, 2017, 55: 640-663 [16] Han W, Migórski S, Sofonea M. A class of variational-hemivariational inequalities with applications to frictional contact problems. SIAM J Math Anal,2014, 46: 3891-3912 [17] Kashiwabara T. On a strong solution of the non-stationary Navier-Stokes equations under slip or leak boundary conditions of friction type. J Differential Equations, 2013, 254: 756-778 [18] Le Roux C, Tani A. Steady solutions of the Navier-Stokes equations with threshold slip boundary conditions. Math Methods Appl Sci, 2007, 30: 595-624 [19] Gasi̤ski L, Winkert P. Existence and uniqueness results for double phase problems with convection term. J Differential Equations,2020, 268: 4183-4193 [20] Li Y, Li K. Existence of the solution to stationary Navier-Stokes equations with nonlinear slip boundary conditions. J Math Anal Appl, 2011, 381: 1-9 [21] Lions J L.Quelques Méthodes de Resolution des Problémes aux Limites non Linéaires. Paris: Dunod, 1969 [22] Liu Y J, Migórski S, Nguyen V T, Zeng S D. Existence and convergence results for an elastic frictional contact problem with nonmonotone subdifferential boundary conditions. Acta Math Sci,2021, 41B(4): 1151-1168 [23] Liu Z H, Motreanu D, Zeng S D. Generalized penalty and regularization method for differential variational-hemivariational inequalities. SIAM J Optim, 2021, 31: 1158-1183 [24] Malek J, Rajagopal K R.Mathematical issues concerning the Navier-Stokes equations and some of their generalizations//Dafermos C, Feireisl E. Handbook of Evolutionary Equations. Vol II. Amsterdam: Elsevier, 2005 [25] Migórski S, Dudek S. Evolutionary Oseen model for generalized Newtonian fluid with multivalued nonmonotone friction law. J Math Fluid Mech,2018, 20: 1317-1333 [26] Migórski S, Dudek S. A new class of variational-hemivariational inequalities for steady Oseen flow with unilateral and frictional type boundary conditions. Zeitschrift Angew Math Mech,2020, 100: e201900112 [27] Migórski S, Dudek S. Steady flow with unilateral and leak/slip boundary conditions by the Stokes variational-hemivariational inequality. Appl Anal,2020, 101: 2949-2965 [28] Migórski S, Ochal A. Hemivariational inequalities for stationary Navier-Stokes equations. J Math Anal Appl,2005, 306: 197-217 [29] Migórski S, Ochal A. Quasi-static hemivariational inequality via vanishing acceleration approach. SIAM J Math Anal,2009, 41: 1415-1435 [30] Migórski S, Ochal A, Sofonea M. Nonlinear Inclusions and Hemivariational Inequalities: Models and Analysis of Contact Problems. New York: Springer, 2013 [31] Migórski S, Paczka D. On steady flow of non-Newtonian fluids with frictional boundary conditions in reflexive Orlicz spaces. Nonlinear Anal,2018, 39: 337-361 [32] Migórski S Paczka D. Frictional contact problems for steady flow of incompressible fluids in Orlicz spaces//Dutta H, Ko$\breve{\rm c}$inac L, Srivastava H. Current Trends in Mathematical Analysis and Its Interdisciplinary Applications. Basle: Birkháuser, 2019: 1-53 [33] Morimoto H. Time periodic Navier-Stokes flow with nonhomogeneous boundary condition. J Math Sci Univ Tokyo, 2009, 16: 113-123 [34] Naniewicz Z, Panagiotopoulos P D.Mathematical Theory of Hemivariational Inequalities and Applications. New York: Dekker, 1995 [35] Panagiotopoulos P D.Hemivariational Inequalities: Applications in Mechanics and Engineering. Berlin: Springer-Verlag, 1993 [36] Saito N. On the Stokes equations with the leak and slip boundary conditions of friction type: regularity of solutions. Pub RIMS, Kyoto University, 2004, 40: 345-383 [37] Saito N, Fujita H. Regularity of solutions to the Stokes equation under a certain nonlinear boundary condition. Lecture Notes in Pure Appl Math, 2001, 223: 73-86 [38] Sofonea M, Migórski S. Variational-Hemivariational Inequalities with Applications. New York: Chapman and Hall, 2017 [39] Zeng S D, Migórski S, Liu Z H. Well-posedness, optimal control and sensitivity analysis for a class of differential variational-hemivariational inequalities. SIAM J Optim,2021, 31: 1158-1183 [40] Zeng S D, Bai Y R, Gasi̤ski L, Winkert P. Existence results for double phase implicit obstacle problems involving multivalued operators. Calc Var Partial Differential Equations,2020, 59: Art 176 [41] Zeng S D,Rãdulescu V D, Winkert P. Double phase implicit obstacle problems with convection and multivalued mixed boundary value conditions. SIAM J Math Anal, 2022, 54: 1898-1926 [42] Zeng S D, Migórski S, Liu Z H. Nonstationary incompressible Navier-Stokes system governed by a quasilinear reaction-diffusion equation (in Chinese). Sci Sin Math, 2022, 52: 331-354 [43] Zeng S D, Migórski S, Khan A A. Nonlinear quasi-hemivariational inequalities: existence and optimal control. SIAM J Control Optim,2021, 59: 1246-1274 [44] Zeng S D, Rãdulescu V D, Winkert P. Nonsmooth dynamical systems: From the existence of solutions to optimal and feedback control. Bull Sci Math,2022, 176: 103131 [45] Zeidler E.Nonlinear Functional Analysis and Applications. II: A/B. New York: Springer, 1990 |
[1] | Thieu Huy NGUYEN, Truong Xuan PHAM, Thi Ngoc Ha VU, The Sac LE. EXISTENCE AND STABILITY OF PERIODIC AND ALMOST PERIODIC SOLUTIONS TO THE BOUSSINESQ SYSTEM IN UNBOUNDED DOMAINS [J]. Acta mathematica scientia,Series B, 2022, 42(5): 1875-1901. |
[2] | Lei SHI, Longxing QI, Sulan ZHAI. PERIODIC AND ALMOST PERIODIC SOLUTIONS FOR A NON-AUTONOMOUS RESPIRATORY DISEASE MODEL WITH A LAG EFFECT [J]. Acta mathematica scientia,Series B, 2022, 42(1): 187-211. |
[3] | Liang LU, Lijie LI, Mircea SOFONEA. A GENERALIZED PENALTY METHOD FOR DIFFERENTIAL VARIATIONAL-HEMIVARIATIONAL INEQUALITIES [J]. Acta mathematica scientia,Series B, 2022, 42(1): 247-264. |
[4] | Yongjian LIU, Stanis law MIGORSKI, Van Thien NGUYEN, Shengda ZENG. EXISTENCE AND CONVERGENCE RESULTS FOR AN ELASTIC FRICTIONAL CONTACT PROBLEM WITH NONMONOTONE SUBDIFFERENTIAL BOUNDARY CONDITIONS [J]. Acta mathematica scientia,Series B, 2021, 41(4): 1151-1168. |
[5] | Mingwei WANG, Fei GUO. MULTIPLICITY OF PERIODIC SOLUTIONS FOR SECOND ORDER HAMILTONIAN SYSTEMS WITH MIXED NONLINEARITIES [J]. Acta mathematica scientia,Series B, 2021, 41(2): 371-380. |
[6] | Haochuan HUANG, Rui HUANG. ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR THE CHAFEE-INFANTE EQUATION [J]. Acta mathematica scientia,Series B, 2020, 40(2): 425-441. |
[7] | Hairong YUAN. TIME-PERIODIC ISENTROPIC SUPERSONIC EULER FLOWS IN ONE-DIMENSIONAL DUCTS DRIVING BY PERIODIC BOUNDARY CONDITIONS [J]. Acta mathematica scientia,Series B, 2019, 39(2): 403-412. |
[8] | Changyou WANG, Nan LI, Yuqian ZHOU, Xingcheng PU, Rui LI. ON A MULTI-DELAY LOTKA-VOLTERRA PREDATOR-PREY MODEL WITH FEEDBACK CONTROLS AND PREY DIFFUSION [J]. Acta mathematica scientia,Series B, 2019, 39(2): 429-448. |
[9] | Wenyan CUI, Lufang MI, Li YIN. KAM TORI FOR DEFOCUSING KDV-MKDV EQUATION [J]. Acta mathematica scientia,Series B, 2019, 39(1): 243-258. |
[10] | Stanis ław MIGÓRSKI, Justyna OGORZA LY. A VARIATIONAL-HEMIVARIATIONAL INEQUALITY IN CONTACT PROBLEM FOR LOCKING MATERIALS AND NONMONOTONE SLIP DEPENDENT FRICTION [J]. Acta mathematica scientia,Series B, 2017, 37(6): 1639-1652. |
[11] | Paweł SZAFRANIEC. ANALYSIS OF AN ELASTO-PIEZOELECTRIC SYSTEM OF HEMIVARIATIONAL INEQUALITIES WITH THERMAL EFFECTS [J]. Acta mathematica scientia,Series B, 2017, 37(4): 1048-1060. |
[12] | Mohammed Salah M'HAMDI, Chaouki AOUITI, Abderrahmane TOUATI, Adel M. ALIMI, Vaclav SNASEL. WEIGHTED PSEUDO ALMOST-PERIODIC SOLUTIONS OF SHUNTING INHIBITORY CELLULAR NEURAL NETWORKS WITH MIXED DELAYS [J]. Acta mathematica scientia,Series B, 2016, 36(6): 1662-1682. |
[13] | Chunhua JIN, Tong YANG. TIME PERIODIC SOLUTION TO THE COMPRESSIBLE NAVIER-STOKES EQUATIONS IN A PERIODIC DOMAIN [J]. Acta mathematica scientia,Series B, 2016, 36(4): 1015-1029. |
[14] | Adnène ARBI, Farouk CHÉRIF, Chaouki AOUITI, Abderrahmen TOUATI. DYNAMICS OF NEW CLASS OF HOPFIELD NEURAL NETWORKS WITH TIME-VARYING AND DISTRIBUTED DELAYS [J]. Acta mathematica scientia,Series B, 2016, 36(3): 891-912. |
[15] | Hong CAI, Zhong TAN. WEAK TIME-PERIODIC SOLUTIONS TO THE COMPRESSIBLE NAVIER-STOKES EQUATIONS [J]. Acta mathematica scientia,Series B, 2016, 36(2): 499-513. |
|