Acta mathematica scientia,Series B ›› 2023, Vol. 43 ›› Issue (4): 1668-1674.doi: 10.1007/s10473-023-0414-y
Previous Articles Next Articles
Fei WU, Zejun WANG, Fangqi CHEN†
Received:
2022-04-25
Published:
2023-08-08
Contact:
†Fangqi CHEN, E-mail: About author:
Fei WU, E-mail: wufei003@nuaa.edu.cn; Zejun WANG, E-mail: wangzejun@gmail.com
Supported by:
Fei WU, Zejun WANG, Fangqi CHEN. THE GLOBAL EXISTENCE OF BV SOLUTIONS OF THE ISENTROPIC p-SYSTEM WITH LARGE INITIAL DATA∗[J].Acta mathematica scientia,Series B, 2023, 43(4): 1668-1674.
[1] Bressan A.Hyperbolic Systems of Conservation Laws: The 1-Dimensional Cauchy Problem. Oxford: Oxford Univ Press, 2000 [2] Bressan A, Liu T P, Yang T. L1 stability estimates for n×n conservation laws. Arch Ration Mech Anal, 1999, 149(1): 1-22 [3] Glimm J. Solutions in the large for nonlinear hyperbolic systems of equations. Comm Pure Appl Math1965, 18: 697-715 [4] Lax P D. Hyperbolic systems of conservation laws II. Comm Pure Appl Math1957, 10: 537-566 [5] Lions P L, Perthame B, Tadmor E. Kinetic formulation of the isentropic gas dynamics and p-system. Comm Math Phys1994, 163: 415-431 [6] Lions P L, Perthame B, Souganidis P E. Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates. Comm Pure Appl Math, 1996, 49: 599-638 [7] Nishida T. Global solution for an initial boundary value problem of a quasilinear hyperbolic system. Proc Japan Acad, 1968, 44(7): 642-646 [8] Bakhvalov N S. The existence in the large of a regular solution of a quasilinear hyperbolic system. Ussr Comp Math and Math Phys, 1970, 10: 969-980 [9] Nishida T, Smoller J. Solutions in the large for some nonlinear hyperbolic conservation laws. Comm Pure Appl Math, 1973, 26(2): 183-200 [10] Diperna R J. Existence in the large for quasilinear hyperbolic conservation laws. Arch Ration Mech Anal1973, 52(3): 244-257 [11] Yang W, Liu S. Large BV solution for isentropic gas dynamics system with initial data far from vacuum. Applied Mathematics Letter, 2021, 114: 106914 [12] Dafermos C M.Hyperbolic Conservation Laws in Continuum Physics. Berlin: Springer, 2005: 436-460 |
[1] | Fen HE, Zhen WANG, Tingting CHEN. THE SHOCK WAVES FOR A MIXED-TYPE SYSTEM FROM CHEMOTAXIS∗ [J]. Acta mathematica scientia,Series B, 2023, 43(4): 1717-1734. |
[2] | Jingfeng SHAO, Zhichang GUO, Wenjuan YAO, Dong YAN, Boying WU. A NON-LOCAL DIFFUSION EQUATION FOR NOISE REMOVAL [J]. Acta mathematica scientia,Series B, 2022, 42(5): 1779-1808. |
[3] | Xueke PU, Boling GUO. INITIAL BOUNDARY VALUE PROBLEM FOR THE 3D MAGNETIC-CURVATURE-DRIVEN RAYLEIGH-TAYLOR MODEL [J]. Acta mathematica scientia,Series B, 2020, 40(2): 529-542. |
[4] | Jianli LIU, Jie XUE. GLOBAL SIMPLE WAVE SOLUTIONS TO A KIND OF TWO DIMENSIONAL HYPERBOLIC SYSTEM OF CONSERVATION LAWS [J]. Acta mathematica scientia,Series B, 2020, 40(1): 261-271. |
[5] | Ting ZHANG, Wancheng SHENG. GLOBAL SOLUTIONS OF THE PERTURBED RIEMANN PROBLEM FOR THE CHROMATOGRAPHY EQUATIONS [J]. Acta mathematica scientia,Series B, 2019, 39(1): 57-82. |
[6] | Shujun LIU, Fangqi CHEN, Zejun WANG. EXISTENCE OF GLOBAL L∞ SOLUTIONS TO A GENERALIZED n×n HYPERBOLIC SYSTEM OF LEROUX TYPE [J]. Acta mathematica scientia,Series B, 2018, 38(3): 889-897. |
[7] | Corrado MASCIA. TWENTY-EIGHT YEARS WITH “HYPERBOLIC CONSERVATION LAWS WITH RELAXATION” [J]. Acta mathematica scientia,Series B, 2015, 35(4): 807-831. |
[8] | Debora AMADORI, Paolo BAITI, Andrea CORLI, Edda DAL SANTO. GLOBAL EXISTENCE OF SOLUTIONS FOR A MULTI-PHASE FLOW: A BUBBLE IN A LIQUID TUBE AND RELATED CASES [J]. Acta mathematica scientia,Series B, 2015, 35(4): 832-854. |
[9] | Gaowei CAO, Kai HU, Xiaozhou YANG. FORMULA OF GLOBAL SMOOTH SOLUTION FOR NON-HOMOGENEOUS M-D CONSERVATION LAW WITH UNBOUNDED INITIAL VALUE [J]. Acta mathematica scientia,Series B, 2015, 35(2): 508-526. |
[10] | Adil JHANGEER. CONSERVATION LAWS FOR THE (1 + 2)-DIMENSIONAL WAVE EQUATION IN BIOLOGICAL ENVIRONMENT [J]. Acta mathematica scientia,Series B, 2013, 33(5): 1255-1268. |
[11] | WANG Zhi-Gang, LI Ya-Chun. THE HOMOGENEOUS DIRICHLET PROBLEM FOR QUASILINEAR ANISOTROPIC DEGENERATE PARABOLIC-HYPERBOLIC EQUATION#br# WITH Lp INITIAL VALUE [J]. Acta mathematica scientia,Series B, 2012, 32(5): 1727-1742. |
[12] | Rinaldo M. Colombo, Magali L′ecureux-Mercier. NONLOCAL CROWD DYNAMICS MODELS FOR SEVERAL POPULATIONS [J]. Acta mathematica scientia,Series B, 2012, 32(1): 177-196. |
[13] | Geng Chen, Robin Young. THE VACUUM IN NONISENTROPIC GAS DYNAMICS [J]. Acta mathematica scientia,Series B, 2012, 32(1): 339-351. |
[14] | Michael G. Hilgers. NONUNIQUENESS AND SINGULAR RADIAL SOLUTIONS OF SYSTEMS OF CONSERVATION LAWS [J]. Acta mathematica scientia,Series B, 2012, 32(1): 367-379. |
[15] | Stefano Bianchini. SBV REGULARITY OF GENUINELY NONLINEAR HYPERBOLIC SYSTEMS OF CONSERVATION LAWS IN ONE SPACE DIMENSION [J]. Acta mathematica scientia,Series B, 2012, 32(1): 380-388. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 6
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 58
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|