Acta mathematica scientia,Series B ›› 2022, Vol. 42 ›› Issue (1): 187-211.doi: 10.1007/s10473-022-0110-3
• Articles • Previous Articles Next Articles
Lei SHI, Longxing QI, Sulan ZHAI
Received:
2020-07-27
Revised:
2021-05-21
Online:
2022-02-25
Published:
2022-02-24
Contact:
Longxing QI,E-mail:qilx@ahu.edu.cn
E-mail:qilx@ahu.edu.cn
Supported by:
CLC Number:
Lei SHI, Longxing QI, Sulan ZHAI. PERIODIC AND ALMOST PERIODIC SOLUTIONS FOR A NON-AUTONOMOUS RESPIRATORY DISEASE MODEL WITH A LAG EFFECT[J].Acta mathematica scientia,Series B, 2022, 42(1): 187-211.
[1] Zhu S, Lian X, Wei L, et al. PM2.5 forecasting using SVR with PSOGSA algorithm based on CEEMD, GRNN and GCA considering meteorological factors. Atmos Environ, 2018, 183(5):20-32 [2] Jo E J, Lee W S, Jo H Y, et al. Effects of particulate matter on respiratory disease and the impact of meteorological factors in Busan. Korea, Resp Med, 2017, 124:79-87 [3] Weber S A, Insaf T Z, Hall E S, et al. Assessing the impact of fine particulate matter (PM2.5) on respiratorycardiovascular chronic diseases in the New York City Metropolitan area using Hierarchical Bayesian Model estimates. Environ Res, 2016, 151:399-409 [4] Li Y, Ma Z, Zheng C, et al. Ambient temperature enhanced acute cardiovascular-respiratory mortality effects of PM2.5 in Beijing, China. Int J Biometeorol, 2015, 59(12):1761-1770 [5] Tang S, Yan Q, Shi W, et al. Measuring the impact of air pollution on respiratory infection risk in China. Environ Pollut, 2018, 232:477-486 [6] Kuniya T, Nakata Y. Permanence and extinction for a nonautonomous SEIRS epidemic model. Appl Math Comput, 2012, 218(18):9321-9331 [7] Lu C, Ding X. Persistence and extinction in general non-autonomous logistic model with delays and stochastic perturbation. Appl Math Comput, 2014, 229:1-15 [8] Shi C L, Li Z, Chen F. The permanence and extinction of a nonlinear growth rate single-species nonautonomous dispersal models with time delays. Nonl Anal:Real World Appl, 2007, 8(5):1536-1550 [9] Teng Z, Liu Y, Zhang L. Persistence and extinction of disease in non-autonomous SIRS epidemic models with disease-induced mortality. Nonl Anal, 2008, 69(8):2599-2614 [10] Martcheva M. A non-autonomous multi-strain SIS epidemic model. J Biol Dyn, 2009, 3(2/3):235-251 [11] Qi H, Zhang S, Meng X, et al. Periodic solution and ergodic stationary distribution of two stochastic SIQS epidemic systems. Physica A:Stat Mech Appl, 2018, 508:223-241 [12] Du Z, Feng Z. Periodic solutions of a neutral impulsive predator-prey model with Beddington-DeAngelis functional response with delays. J Comput Appl Math, 2014, 258:87-98 [13] Arenas A J, Gilberto G P, Lucas J. Periodic solutions of nonautonomous differential systems modeling obesity population. Chaos, Solit Fract, 2009, 42(2):1234-1244 [14] Yuan S L, Ma Z E, Jin Z. Persistence and periodic solution on a nonautonomous SIS model with delays. Acta Math Appl Sin-E, 2003, 19(1):167-176 [15] Zhou Y, Ma Z. The periodic solutions for time dependent age-structured population models. Acta Math Sci, 2000, 20B(2):155-161 [16] Gakkhar S, Singh B. Dynamics of modified Leslie-Gower-type prey-predator model with seasonally varying parameters. Chaos, Sol Frac, 2006, 27(5):1239-1255 [17] Moussaoui A, Bouguima S M. Seasonal influences on a prey-predator model. J Appl Math Comput, 2016, 50(1/2):39-57 [18] Doveri F, Scheffer M, Rinaldi S, et al. Seasonality and chaos in a plankton fish model. Theor Popul Biol, 1993, 43(2):159-183 [19] Wang C, Wang S, Li L. Periodic solution and almost periodic solution of a nonmonotone reaction-diffusion system with time delay. Acta Math Sci, 2010, 30B(2):517-524 [20] Mahieddine K, Tatar N E. Existence and global attractivity of a periodic solution to a nonautonomous dispersal system with delays. Appl Math Model, 2007, 31(4):780-793 [21] Wang Q, Dai B. Three periodic solutions of nonlinear neutral functional differential equations. Nonl Anal:Real World Appl, 2008, 9(3):977-984 [22] Xia Y, Chen F, Chen A, et al. Existence and global attractivity of an almost periodic ecological model. Appl Math Comput, 2004, 157(2):449-475 [23] Xie Y, Li X. Almost periodic solutions of single population model with hereditary effects. Appl Math Comput, 2008, 203(2):690-697 [24] Fan M, Wang K, Jiang D. Existence and global attractivity of positive periodic solutions of periodic nspecies Lotka-Volterra competition systems with several deviating arguments. Math Biosic, 1999, 160(1):47-61 [25] Chen X X. Almost periodic solutions of nonlinear delay population equation with feedback control. Nonl Anal:Real World Appl, 2007, 8(1):62-72 [26] Chen X X, Chen F D. Almost-periodic solutions of a delay population equation with feedback control, Nonl Anal:Real World Appl, 2006, 7:559-571 [27] Zhang R, Wang L. Almost periodic solutions for cellular neural networks with distributed delays. Acta Math Sci, 2011, 31B(2):422-429 [28] Menouer M A, Moussaoui A, Ait Dads E H. Existence and global asymptotic stability of positive almost periodic solution for a predator-prey system in an artificial lake. Chaos, Solit Frac, 2017, 103:271-278 [29] Zhang T, Gan X. Almost periodic solutions for a discrete fishing model with feedback control and time delays. Commun Nonlinear Sci Numer Simulat, 2014, 19(1):150-163 [30] Huang P, Li X, Liu B. Almost periodic solutions for an asymmetric oscillation. J Differ Equations, 2017, 263(12):8916-8946 [31] Shi L, Feng X L, Qi L X, et al. Modeling and predicting the influence of PM2.5 on children's respiratory diseases. Int J Bifurc Chaos, 2020, 30(15):2050235 [32] Phosri A, Ueda K, Phung V, et al. Effects of ambient air pollution on daily hospital admissions for respiratory and cardiovascular diseases in Bangkok, Thailand. Sci Total Environ, 2019, 651:1144-1153 [33] Nhung N, Schindler C, Dien T M, et al. Acute effects of ambient air pollution on lower respiratory infections in Hanoi children:An eight-year time series study. Environ Int, 2018, 110:139-148 [34] He S, Tang S, Xiao Y, et al. Stochastic modelling of air pollution impacts on respiratory infection risk. Bull Math Biol, 2018, 80:3127-3153 [35] Cairncross E K, John J, Zunckel M. A novel air pollution index based on the relative risk of daily mortality associated with short-term exposure to common air pollutants. Atmos Environ, 2007, 41(38):8442-8454 [36] Takeuchi Y, Beretta E, Ma W B. Global asymptotic properties of a SIR epidemic model with nite incubation time. Nonl Anal:TMA, 2000, 42(6):931-947 [37] Ma W B, Song M, Takeuchi Y. Global stability of an SIR epidemic model with time delays. Appl Math Lett, 2004, 17(10):1141-1145 [38] Mccluskey C C. Complete global stability for an SIR epidemic model with delay-Distributed or discrete. Nonl Anal:Real World Appl, 2010, 11(1):55-59 [39] Thieme H R. Uniform persistence and permanence for non-autonomous semiflows in population biology. Math Biosci, 2000, 166(2):173-201 [40] Abdurhaman X, Teng Z D. On the persistence and extinction for a non-autonomous SIRS epidemic model. Int J Biomath, 2006, 21(2):167-176 [41] Tian B, Qiu Y, Chen N. Periodic and almost periodic solution for a non-autonomous epidemic predator-prey system with time-delay. Appl Math Comput, 2009, 215(2):779-790 [42] Alzabut J O, Stamov G T, Sermutlu E. Positive almost periodic solutions for a delay logarithmic population model. Math Comput Model, 2011, 53(1/2):161-167 [43] Xu C, Li P, Guo Y. Global asymptotical stability of almost periodic solutions for a non-autonomous competing model with time-varying delays and feedback controls. J Biol Dynam, 2019, 13(1):407-421 [44] Song X, Chen L. Optimal harvesting and stability for a two-species competitive system with stage structure. Math Biosci, 2001, 170(2):173-186 [45] Chen F, Li Z, Chen X, et al. Dynamic behaviors of a delay differential equation model of plankton allelopathy. J Comput Appl Math, 2007, 206(2):733-754 [46] Zhang T L, Teng Z D. On a nonautonomous SEIRS model in epidemiology. Bull. Math Biol, 2007, 69:2537-2559 [47] Liu Z, Chen L. On positive periodic solutions of a nonautonomous neutral delay-species competitive system. Nonl Anal-Theor, 2008, 68(6):1409-1420 [48] Lou X, Cui B. Existence and global attractivity of almost periodic solutions for neural field with time delay. Appl Math Comput, 2008, 200(1):465-472 [49] Zhang T. Almost periodic oscillations in a generalized Mackey-Glass model of respiratory dynamics with several delays. Int J Biomath, 2014, 7(3):1450029 [50] Kuang Y, MA Z. Delay differential equations with applications in population dynamics. Math Comput Simul, 1993, 35(5):452-453 [51] Chen F. Periodic solutions and almost periodic solutions for a delay multispecies Logarithmic population model. Appl Math Comput, 2005, 171(2):760-770 [52] Zhang T, Xiong L. Periodic motion for impulsive fractional functional differential equations with piecewise Caputo derivative. Appl Math Lett, 2020, 101:106072 [53] Duan X, Wei G, Yang H. Positive solutions and infinitely many solutions for a weakly coupled system. Acta Math Sci, 2020, 40B(5):1585-1601 [54] Geng J, Xia Y. Almost periodic solutions of a nonlinear ecological model. Commun Nonlinear Sci Numer Simulat, 2011, 16:2575-2597 [55] Abbas S, Sen M, Banerjee M. Almost periodic solution of a non-autonomous model of phytoplankton allelopathy. Nonlinear Dynam, 2012, 67(1):203-214 [56] Yuan H. Time-periodic isentropic supersonic euler flows in one-dimensional ducts driving by periodic boundary conditions. Acta Math Sci, 2019, 39B(2):403-412 [57] Wang C, Li L, Zhang Q, et al. Dynamical behaviour of a Lotka-Volterra competitive-competitive- cooperative model with feedback controls and time delays. J Biol Dynam, 2019, 13(1):43-68 [58] Zhang T, Yang L, Xu L. Stage-structured control on a class of predator-prey system in almost periodic environment. Int J Control, 2020, 93(6):1442-1460 [59] Bohner M, Stamov G Tr, Stamova I M. Almost periodic solutions of Cohen-Grossberg neural networks with time-varying delay and variable impulsive perturbations. Commun Nonlinear Sci Numer Simulat, 2020, 80:1-14 |
[1] | Mingwei WANG, Fei GUO. MULTIPLICITY OF PERIODIC SOLUTIONS FOR SECOND ORDER HAMILTONIAN SYSTEMS WITH MIXED NONLINEARITIES [J]. Acta mathematica scientia,Series B, 2021, 41(2): 371-380. |
[2] | Haochuan HUANG, Rui HUANG. ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR THE CHAFEE-INFANTE EQUATION [J]. Acta mathematica scientia,Series B, 2020, 40(2): 425-441. |
[3] | Hairong YUAN. TIME-PERIODIC ISENTROPIC SUPERSONIC EULER FLOWS IN ONE-DIMENSIONAL DUCTS DRIVING BY PERIODIC BOUNDARY CONDITIONS [J]. Acta mathematica scientia,Series B, 2019, 39(2): 403-412. |
[4] | Changyou WANG, Nan LI, Yuqian ZHOU, Xingcheng PU, Rui LI. ON A MULTI-DELAY LOTKA-VOLTERRA PREDATOR-PREY MODEL WITH FEEDBACK CONTROLS AND PREY DIFFUSION [J]. Acta mathematica scientia,Series B, 2019, 39(2): 429-448. |
[5] | Wenyan CUI, Lufang MI, Li YIN. KAM TORI FOR DEFOCUSING KDV-MKDV EQUATION [J]. Acta mathematica scientia,Series B, 2019, 39(1): 243-258. |
[6] | Mohammed Salah M'HAMDI, Chaouki AOUITI, Abderrahmane TOUATI, Adel M. ALIMI, Vaclav SNASEL. WEIGHTED PSEUDO ALMOST-PERIODIC SOLUTIONS OF SHUNTING INHIBITORY CELLULAR NEURAL NETWORKS WITH MIXED DELAYS [J]. Acta mathematica scientia,Series B, 2016, 36(6): 1662-1682. |
[7] | Chunhua JIN, Tong YANG. TIME PERIODIC SOLUTION TO THE COMPRESSIBLE NAVIER-STOKES EQUATIONS IN A PERIODIC DOMAIN [J]. Acta mathematica scientia,Series B, 2016, 36(4): 1015-1029. |
[8] | Adnène ARBI, Farouk CHÉRIF, Chaouki AOUITI, Abderrahmen TOUATI. DYNAMICS OF NEW CLASS OF HOPFIELD NEURAL NETWORKS WITH TIME-VARYING AND DISTRIBUTED DELAYS [J]. Acta mathematica scientia,Series B, 2016, 36(3): 891-912. |
[9] | Hong CAI, Zhong TAN. WEAK TIME-PERIODIC SOLUTIONS TO THE COMPRESSIBLE NAVIER-STOKES EQUATIONS [J]. Acta mathematica scientia,Series B, 2016, 36(2): 499-513. |
[10] | Sahbi BOUSSANDEL. EXISTENCE AND UNIQUENESS OF PERIODIC SOLUTIONS FOR GRADIENT SYSTEMS IN FINITE DIMENSIONAL SPACES [J]. Acta mathematica scientia,Series B, 2016, 36(1): 233-243. |
[11] | M. SYED ALI. STOCHASTIC STABILITY OF UNCERTAIN RECURRENT NEURAL NETWORKS WITH MARKOVIAN JUMPING PARAMETERS [J]. Acta mathematica scientia,Series B, 2015, 35(5): 1122-1136. |
[12] | Renjun DUAN, Shuangqian LIU. TIME-PERIODIC SOLUTIONS OF THE VLASOV-POISSON-FOKKER-PLANCK SYSTEM [J]. Acta mathematica scientia,Series B, 2015, 35(4): 876-886. |
[13] | XU Qiu Ju,CAI Hong,TAN Zhong. TIME PERIODIC SOLUTIONS OF NON-ISENTROPIC COMPRESSIBLE MAGNETOHYDRODYNAMIC SYSTEM [J]. Acta mathematica scientia,Series B, 2015, 35(1): 216-234. |
[14] | Philip KORMAN, Yi LI. HARMONIC OSCILLATORS AT RESONANCE, PERTURBED BY A NON-LINEAR FRICTION FORCE [J]. Acta mathematica scientia,Series B, 2014, 34(4): 1025-1028. |
[15] | LU Shi-Ping, ZHENG Liang, CHEN Li-Juan. HOMOCLINIC SOLUTIONS FOR A CLASS OF SECOND ORDER NEUTRAL FUNCTIONAL DIFFERENTIAL SYSTEMS [J]. Acta mathematica scientia,Series B, 2013, 33(5): 1361-1374. |
|