Acta mathematica scientia,Series B ›› 2023, Vol. 43 ›› Issue (2): 777-820.doi: 10.1007/s10473-023-0217-1
Previous Articles Next Articles
Zhendong Fang1,†, Ning Jiang2
Received:
2021-07-16
Revised:
2022-02-17
Online:
2023-03-25
Published:
2023-04-12
Contact:
†Zhendong Fang, E-mail: About author:
Ning Jiang, E-mail: njiang@whu.edu.cn
Zhendong Fang, Ning Jiang. CONVERGENCE FROM THE TWO-SPECIES VLASOV-POISSON-BOLTZMANN SYSTEM TO THE TWO-FLUID INCOMPRESSIBLE NAVIER-STOKES-FOURIER-POISSON SYSTEM WITH OHM'S LAW*[J].Acta mathematica scientia,Series B, 2023, 43(2): 777-820.
[1] Arsénio D.From Boltzmann's equation to the incompressible Navier-Stokes-Fourier system with long-range interactions. Arch Ration Mech Anal, 2012, 206(3): 367-488 [2] Arsénio D, Saint-Raymond L.From the Vlasov-Maxwell-Boltzmann System to Incompressible Viscous Electro-Magneto-Hydrodynamics. Vol 1. Zürich: European Mathematical Society, 2019 [3] Bardos C, Golse F, Levermore C D.Fluid dynamic limits of kinetic equations I: formal derivation. J Stat Phys, 1991, 63: 323-344 [4] Bardos C, Golse F, Levermore C D.Fluid dynamic limits of kinetic equations II: convergence proof for the Boltzmann equation. Commun Pure Appl Math, 1993, 46: 667-753 [5] Bardos C, Ukai S.The classical incompressible Navier-Stokes limit of the Boltzmann equation. Math Models Methods Appl Sci, 1991, 1(2): 235-257 [6] Boyer F, Fabrie P.Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models. New York: Springer, 2013 [7] Briant M.From the Boltzmann equation to the incompressible Navier-Stokes equations on the torus: a quantitative error estimate. J Differential Equations, 2015, 259(11): 6072-6141 [8] Briant M, Merino-Aceituno S, Mouhot C.From Boltzmann to incompressible Navier-Stokes in Sobolev spaces with polynomial weight. Anal Appl (Singap), 2019, 17(1): 85-116 [9] Caflisch R.The fluid dynamic limit of the nonlinear Boltzmann equation. Comm Pure Appl Math, 1980, 33(5): 651-666 [10] De Masi A, Esposito R, Lebowitz J L.Incompressible Navier-Stokes and Euler limits of the Boltzmann equation. Comm Pure Appl Math, 1989, 42(8): 1189-1214 [11] DiPerna R J, P L Lions. On the Cauchy problem for Boltzmann equations: Global existence and weak stability. Ann Math, 1989, 130: 321-366 [12] Duan R J, Yang T, Zhao H J.The Vlasov-Poisson-Boltzmann system in the whole space: The hard potential case. J Differential Equations, 2012, 252(12): 6356-6386 [13] Duan R J, Yang T, Zhao H J.The Vlasov-Poisson-Boltzmann system for soft potentials. Math Models Methods Appl Sci, 2013, 23(6): 979-1028 [14] Duan R J, Lei Y J, Yang T, Zhao H J.The Vlasov-Maxwell-Boltzmann system near Maxwellians in the whole space with very soft potentials. Commun Math Phys, 2017, 351: 95-153 [15] Gallagher I, Tristani I.On the convergence of smooth solutions from Boltzmann to Navier-Stokes. Ann H Lebesgue, 2020, 3: 561-614 [16] Golse F, Saint-Raymond L.The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels. Invent Math, 2004, 155(1): 81-161 [17] Golse F, Saint-Raymond L.Hydrodynamic limits for the Boltzmann equation. Riv Mat Univ Parma, 2005, 7: 1-144 [18] Guo M M, Jiang N, Luo Y L.From Vlasov-Poisson-Boltzmann system to incompressible Navier-Stokes- Fourier-Poisson system: convergence for classical solutions. arXiv: 20006.16514 [19] Guo Y.The Vlasov-Poisson-Boltzmann system near Maxwellians. Comm Pure Appl Math, 2002, 55: 1104-1135 [20] Guo Y.The Boltzmann equation in the whole space. Indiana Univ Math J, 2004, 53(4): 1081-1094 [21] Guo Y.Boltzmann diffusive limit beyond the Navier-Stokes approximation. Comm Pure Appl Math, 2006, 59(5): 626-687 [22] Guo Y, Jang J.Global Hilbert expansion for the Vlasov-Poisson-Boltzmann system. Commun Math Phys, 2010, 299: 469-501 [23] Guo Y, Jang J, Jiang N.Local Hilbert expansion for the Boltzmann equation. Kinet Relat Models, 2009, 2(1): 205-214 [24] Guo Y, Jang J, Jiang N.Acoustic limit for the Boltzmann equation in optimal scaling. Comm Pure Appl Math, 2010, 63(3): 337-361 [25] Jang J, Jiang N.Acoustic limit of the Boltzmann equation: Classical solutions. Discrete Contin Dyn Syst, 2009, 25(3): 869-882 [26] Jiang N, Xu C J, Zhao H J.Incompressible Navier-Stokes-Fourier limit from the Boltzmann equation: classical solutions. Indiana Univ Math J, 2018, 67(5): 1817-1855 [27] Jiang N, Masmoudi N.Boundary layers and incompressible Navier-Stokes-Fourier limit of the Boltzmann equation in bounded domain I. Comm Pure Appl Math, 2017, 70(1): 90-171 [28] Jiang N, Zhang X.Sensitivity analysis and incompressible Navier-Stokes-Poisson limit of Vlasov-Poisson- Boltzmann equations with uncertainty. arXiv:2007.00879 [29] Levermore C D, Sun W.Compactness of the gain parts of the linearized Boltzmann operator with weakly cutoff kernels. Kinet Relat Models, 2010, 3(2): 335-351 [30] Lions P L. Compactness in Boltzmann's equation via Fourier integral operators and applications. I, II. J Math Kyoto Univ, 1994, 34(2): 391-427, 429-461 [31] Masmoudi N, Saint-Raymond L.From the Boltzmann equation to the Stokes-Fourier system in a bounded domain. Comm Pure Appl Math, 2003, 56(9): 1263-1293 [32] Mischler S, Mouhot C.Kac's program in kinetic theory. Invent Math, 2013, 193(1): 1-147 [33] Nishida T.Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the compressible Euler equation. Comm Math Phys, 1978, 61: 119-148 [34] Saint-Raymond L.Hydrodynamic Limits of the Boltzmann Equations. Berlin: Springer-Verlag, 2009 [35] Ukai S.Solutions of the Boltzmann equation//Nishida T, Mimura M, Fujii H. Patterns and Waves. Amsterdam: North-Holland, 1986: 37-96 [36] Xiao Q H, Xiong L J, Zhao H J.The Vlasov-Posson-Boltzmann system without angular cutoff for hard potential. Science China Math, 2014, 57(3): 515-540 [37] Xiao Q H, Xiong L J, Zhao H J.The Vlasov-Poisson-Boltzmann system for the whole range of cutoff soft potentials. J Funct Anal, 2017, 272(1): 166-226 |
[1] | Ran Wang, Beibei Zhang. A LARGE DEVIATION PRINCIPLE FOR THE STOCHASTIC GENERALIZED GINZBURG-LANDAU EQUATION DRIVEN BY JUMP NOISE* [J]. Acta mathematica scientia,Series B, 2023, 43(2): 505-530. |
[2] | Zhankuan Zeng, Yanping CHEN. A LOCAL DISCONTINUOUS GALERKIN METHOD FOR TIME-FRACTIONAL DIFFUSION EQUATIONS* [J]. Acta mathematica scientia,Series B, 2023, 43(2): 839-854. |
[3] | Minghua Yang, Jinyi Sun, Zunwei Fu, Zheng Wang. THE SINGULAR CONVERGENCE OF A CHEMOTAXIS-FLUID SYSTEM MODELING CORAL FERTILIZATION* [J]. Acta mathematica scientia,Series B, 2023, 43(2): 492-504. |
[4] | Jinbao Jian, Chen Zhang, Pengjie Liu. A SUPERLINEARLY CONVERGENT SPLITTING FEASIBLE SEQUENTIAL QUADRATIC OPTIMIZATION METHOD FOR TWO-BLOCK LARGE-SCALE SMOOTH OPTIMIZATION* [J]. Acta mathematica scientia,Series B, 2023, 43(1): 1-24. |
[5] | Duong Viet Thong, Vu Tien Dung. A RELAXED INERTIAL FACTOR OF THE MODIFIED SUBGRADIENT EXTRAGRADIENT METHOD FOR SOLVING PSEUDO MONOTONE VARIATIONAL INEQUALITIES IN HILBERT SPACES* [J]. Acta mathematica scientia,Series B, 2023, 43(1): 184-204. |
[6] | Shifeng GENG, Feimin HUANG, Xiaochun WU. L2-CONVERGENCE TO NONLINEAR DIFFUSION WAVES FOR EULER EQUATIONS WITH TIME-DEPENDENT DAMPING [J]. Acta mathematica scientia,Series B, 2022, 42(6): 2505-2522. |
[7] | Yicheng LIU. EXPONENTIAL STABILITY OF A MULTI-PARTICLE SYSTEM WITH LOCAL INTERACTION AND DISTRIBUTED DELAY [J]. Acta mathematica scientia,Series B, 2022, 42(5): 2165-2187. |
[8] | Yongfu YANG, Qiangchang JU, Shuang ZHOU. THE GLOBAL COMBINED QUASI-NEUTRAL AND ZERO-ELECTRON-MASS LIMIT OF NON-ISENTROPIC EULER-POISSON SYSTEMS [J]. Acta mathematica scientia,Series B, 2022, 42(4): 1666-1680. |
[9] | Yingqiu LI, Xulan HUANG, Zhaohui PENG. CENTRAL LIMIT THEOREM AND CONVERGENCE RATES FOR A SUPERCRITICAL BRANCHING PROCESS WITH IMMIGRATION IN A RANDOM ENVIRONMENT [J]. Acta mathematica scientia,Series B, 2022, 42(3): 957-974. |
[10] | Nguyen Xuan LINH, Duong Viet THONG, Prasit CHOLAMJIAK, Pham Anh TUAN, Luong Van LONG. STRONG CONVERGENCE OF AN INERTIAL EXTRAGRADIENT METHOD WITH AN ADAPTIVE NONDECREASING STEP SIZE FOR SOLVING VARIATIONAL INEQUALITIES [J]. Acta mathematica scientia,Series B, 2022, 42(2): 795-812. |
[11] | Mehdi MOHAMMADI, G. Zamani ESKANDANI. A STRONG CONVERGENCE THEOREM FOR QUASI-EQUILIBRIUM PROBLEMS IN BANACH SPACES [J]. Acta mathematica scientia,Series B, 2022, 42(1): 221-232. |
[12] | Liang LU, Lijie LI, Mircea SOFONEA. A GENERALIZED PENALTY METHOD FOR DIFFERENTIAL VARIATIONAL-HEMIVARIATIONAL INEQUALITIES [J]. Acta mathematica scientia,Series B, 2022, 42(1): 247-264. |
[13] | Weishan ZHENG, Yanping CHEN. A SPECTRAL METHOD FOR A WEAKLY SINGULAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATION WITH PANTOGRAPH DELAY [J]. Acta mathematica scientia,Series B, 2022, 42(1): 387-402. |
[14] | Lulu FANG, Jihua MA, Kunkun SONG, Min WU. MULTIFRACTAL ANALYSIS OF THE CONVERGENCE EXPONENT IN CONTINUED FRACTIONS [J]. Acta mathematica scientia,Series B, 2021, 41(6): 1896-1910. |
[15] | Shukai CHEN, Zenghu LI. CONTINUOUS TIME MIXED STATE BRANCHING PROCESSES AND STOCHASTIC EQUATIONS [J]. Acta mathematica scientia,Series B, 2021, 41(5): 1445-1473. |
|