Acta mathematica scientia,Series B ›› 2023, Vol. 43 ›› Issue (2): 492-504.doi: 10.1007/s10473-023-0202-8
Previous Articles Next Articles
Minghua Yang1, Jinyi Sun2, Zunwei Fu3,4,†, Zheng Wang5
Received:
2021-07-06
Revised:
2022-02-15
Online:
2023-03-25
Published:
2023-04-12
Contact:
†Zunwei Fu, E-mail: About author:
Minghua Yang, E-mail: minghuayang@jxufe.edu.cn; Jinyi Sun, E-mail: sunjy@nwnu.edu.cn; Zheng Wang, E-mail: wangzheng@suwon.ac.kr
Supported by:
Minghua Yang, Jinyi Sun, Zunwei Fu, Zheng Wang. THE SINGULAR CONVERGENCE OF A CHEMOTAXIS-FLUID SYSTEM MODELING CORAL FERTILIZATION*[J].Acta mathematica scientia,Series B, 2023, 43(2): 492-504.
[1] Carrapatoso K, Mischler S.Uniqueness and long time asymptotic for the parabolic-parabolic Keller-Segel equation. Comm Partial Differential Equations, 2017, 42: 291-345 [2] Chae M, Kang K, Lee J.Existence of smooth solutions to coupled chemotaxis-fluid equations. Discrete Contin Dyn Syst, 2013, 33: 2271-2297 [3] Chae M, Kang K, Lee J, Lee K A.A regularity condition and temporal asymptotics for chemotaxis-fluid equations. Nonlinearity, 2018, 31: 351-387 [4] Bazant M, Thornton K, Ajdari A.Diffuse-charge dynamics in electrochemical systems. Phys Rev E, 2004, 70(2): 021506 [5] Biler P, Brandolese L.On the parabolic-elliptic limit of the doubly parabolic Keller-Segel system modeling chemotaxis. Studia Math, 2009, 193: 241-261 [6] Keller E, Segel L.Initiation of slime mold aggregation viewed as an instability. J Theor Biol, 1970, 26: 399-415 [7] Carrapatoso K, Mischler S.Uniqueness and long time asymptotic for the parabolic-parabolic Keller-Segel equation. Comm Partial Differential Equations, 2017, 42: 291-345 [8] Raczynski A.Stability property of the two-dimensional Keller-Segel model. Asymptot Anal, 2009, 61: 35-59 [9] Kurokiba M, Ogawa T.Singular limit problem for the two-dimensional Keller-Segel system in scaling critical space. J Differential Equations, 269(10): 8959-8997 [10] Kurokiba M, Ogawa T.Singular limit problem for the Keller-Segel system and drift-diffusion system in scaling critical spaces. Journal of Evolution Equations, 2020, 20(2): 421-457 [11] Sun J, Cui S.Sharp well-posedness and ill-posedness of the three-dimensional primitive equations of geo- physics in Fourier-Besov spaces. Nonlinear Anal Real World Appl, 2019, 48: 445-465 [12] Schweyer R.Stable blow-up dynamic for the parabolic-parabolic Patlak-Keller-Segel model. arXiv:1403.4975 [13] Winkler M.Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system. J Math Pures Appl, 2013, 100: 748-767 [14] Blanchet A, Carrillo J, Masmoudi N.Infinite time aggregation for the critical Patlak-Keller-Segel model in R2. Commun Pure Appl Math, 2008, 61: 1449-1481 [15] Blanchet A, Dolbeault J, Perthame B.Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions. Electron J Differential Equations, 2006, 2006(44): 1-33 [16] Corrias L, Perthame B, Zaag H.Global solutions of some chemotaxis and angiogenesis systems in high space dimensions. Milan J Math, 2004, 72: 1-28 [17] Yang M, Fu Z, Sun J.Existence and large time behavior to coupled chemotaxis-fluid equations in Besov- Morrey spaces. J Differential Equations, 2009, 266: 5867-5894 [18] Bae H, Biswas A, Tadmor E.Analyticity and decay estimates of the Navier-Stokes equations in critical Besov spaces. Arch Ration Mech Anal, 2012, 205(3): 963-991 |
[1] | Zhankuan Zeng, Yanping CHEN. A LOCAL DISCONTINUOUS GALERKIN METHOD FOR TIME-FRACTIONAL DIFFUSION EQUATIONS* [J]. Acta mathematica scientia,Series B, 2023, 43(2): 839-854. |
[2] | Zhaojie Zhou, Fangyuan Wang, Xiangcheng Zheng. ANALYSIS AND DISCRETIZATION FOR AN OPTIMAL CONTROL PROBLEM OF A VARIABLE-COEFFICIENT RIESZ-FRACTIONAL DIFFUSION EQUATION WITH POINTWISE CONTROL CONSTRAINTS* [J]. Acta mathematica scientia,Series B, 2023, 43(2): 640-654. |
[3] | Haiyang Jin, Kaiying Xu. BOUNDEDNESS OF A CHEMOTAXIS-CONVECTION MODEL DESCRIBING TUMOR-INDUCED ANGIOGENESIS* [J]. Acta mathematica scientia,Series B, 2023, 43(1): 156-168. |
[4] | Jingfeng SHAO, Zhichang GUO, Wenjuan YAO, Dong YAN, Boying WU. A NON-LOCAL DIFFUSION EQUATION FOR NOISE REMOVAL [J]. Acta mathematica scientia,Series B, 2022, 42(5): 1779-1808. |
[5] | Xueting Jin, Yuelong Xiao, Huan Yu. GLOBAL WELL-POSEDNESS OF THE 2D BOUSSINESQ EQUATIONS WITH PARTIAL DISSIPATION [J]. Acta mathematica scientia,Series B, 2022, 42(4): 1293-1309. |
[6] | Fan YANG, Qiaoxi SUN, Xiaoxiao LI. TWO REGULARIZATION METHODS FOR IDENTIFYING THE SOURCE TERM PROBLEM ON THE TIME-FRACTIONAL DIFFUSION EQUATION WITH A HYPER-BESSEL OPERATOR [J]. Acta mathematica scientia,Series B, 2022, 42(4): 1485-1518. |
[7] | Shuyan QIU, Chunlai MU, Hong YI. BOUNDEDNESS AND ASYMPTOTIC STABILITY IN A PREDATOR-PREY CHEMOTAXIS SYSTEM WITH INDIRECT PURSUIT-EVASION DYNAMICS [J]. Acta mathematica scientia,Series B, 2022, 42(3): 1035-1057. |
[8] | Minh-Phuong TRAN, Thanh-Nhan NGUYEN, Phuoc-Toan HUYNH, Nhu-Binh LY, Minh-Dang NGUYEN, Quoc-Anh HO. CONVERGENCE RESULTS FOR NON-OVERLAP SCHWARZ WAVEFORM RELAXATION ALGORITHM WITH CHANGING TRANSMISSION CONDITIONS [J]. Acta mathematica scientia,Series B, 2022, 42(1): 105-126. |
[9] | Bin CHEN, Sergey A. TIMOSHIN. OPTIMAL CONTROL OF A POPULATION DYNAMICS MODEL WITH HYSTERESIS [J]. Acta mathematica scientia,Series B, 2022, 42(1): 283-298. |
[10] | Fucai LI, Zhipeng ZHANG. ZERO KINEMATIC VISCOSITY-MAGNETIC DIFFUSION LIMIT OF THE INCOMPRESSIBLE VISCOUS MAGNETOHYDRODYNAMIC EQUATIONS WITH NAVIER BOUNDARY CONDITIONS [J]. Acta mathematica scientia,Series B, 2021, 41(5): 1503-1536. |
[11] | Meng ZHAO, Wantong LI, Jiafeng CAO. DYNAMICS FOR AN SIR EPIDEMIC MODEL WITH NONLOCAL DIFFUSION AND FREE BOUNDARIES [J]. Acta mathematica scientia,Series B, 2021, 41(4): 1081-1106. |
[12] | Ge TIAN, Haoyu WANG, Zhicheng WANG. SPREADING SPEED IN THE FISHER-KPP EQUATION WITH NONLOCAL DELAY [J]. Acta mathematica scientia,Series B, 2021, 41(3): 875-886. |
[13] | Jing LI, Yingying YANG, Yingjun JIANG, Libo FENG, Boling GUO. HIGH-ORDER NUMERICAL METHOD FOR SOLVING A SPACE DISTRIBUTED-ORDER TIME-FRACTIONAL DIFFUSION EQUATION [J]. Acta mathematica scientia,Series B, 2021, 41(3): 801-826. |
[14] | Xiaoyan WANG, Junyuan YANG. DYNAMICS OF A NONLOCAL DISPERSAL FOOT-AND-MOUTH DISEASE MODEL IN A SPATIALLY HETEROGENEOUS ENVIRONMENT [J]. Acta mathematica scientia,Series B, 2021, 41(2): 552-572. |
[15] | Jishan FAN, Fucai LI, Gen NAKAMURA. THE LOCAL WELL-POSEDNESS OF A CHEMOTAXIS-SHALLOW WATER SYSTEM WITH VACUUM [J]. Acta mathematica scientia,Series B, 2021, 41(1): 231-240. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 9
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 75
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|