[1] Carrapatoso K, Mischler S.Uniqueness and long time asymptotic for the parabolic-parabolic Keller-Segel equation. Comm Partial Differential Equations, 2017, 42: 291-345 [2] Chae M, Kang K, Lee J.Existence of smooth solutions to coupled chemotaxis-fluid equations. Discrete Contin Dyn Syst, 2013, 33: 2271-2297 [3] Chae M, Kang K, Lee J, Lee K A.A regularity condition and temporal asymptotics for chemotaxis-fluid equations. Nonlinearity, 2018, 31: 351-387 [4] Bazant M, Thornton K, Ajdari A.Diffuse-charge dynamics in electrochemical systems. Phys Rev E, 2004, 70(2): 021506 [5] Biler P, Brandolese L.On the parabolic-elliptic limit of the doubly parabolic Keller-Segel system modeling chemotaxis. Studia Math, 2009, 193: 241-261 [6] Keller E, Segel L.Initiation of slime mold aggregation viewed as an instability. J Theor Biol, 1970, 26: 399-415 [7] Carrapatoso K, Mischler S.Uniqueness and long time asymptotic for the parabolic-parabolic Keller-Segel equation. Comm Partial Differential Equations, 2017, 42: 291-345 [8] Raczynski A.Stability property of the two-dimensional Keller-Segel model. Asymptot Anal, 2009, 61: 35-59 [9] Kurokiba M, Ogawa T.Singular limit problem for the two-dimensional Keller-Segel system in scaling critical space. J Differential Equations, 269(10): 8959-8997 [10] Kurokiba M, Ogawa T.Singular limit problem for the Keller-Segel system and drift-diffusion system in scaling critical spaces. Journal of Evolution Equations, 2020, 20(2): 421-457 [11] Sun J, Cui S.Sharp well-posedness and ill-posedness of the three-dimensional primitive equations of geo- physics in Fourier-Besov spaces. Nonlinear Anal Real World Appl, 2019, 48: 445-465 [12] Schweyer R.Stable blow-up dynamic for the parabolic-parabolic Patlak-Keller-Segel model. arXiv:1403.4975 [13] Winkler M.Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system. J Math Pures Appl, 2013, 100: 748-767 [14] Blanchet A, Carrillo J, Masmoudi N.Infinite time aggregation for the critical Patlak-Keller-Segel model in R2. Commun Pure Appl Math, 2008, 61: 1449-1481 [15] Blanchet A, Dolbeault J, Perthame B.Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions. Electron J Differential Equations, 2006, 2006(44): 1-33 [16] Corrias L, Perthame B, Zaag H.Global solutions of some chemotaxis and angiogenesis systems in high space dimensions. Milan J Math, 2004, 72: 1-28 [17] Yang M, Fu Z, Sun J.Existence and large time behavior to coupled chemotaxis-fluid equations in Besov- Morrey spaces. J Differential Equations, 2009, 266: 5867-5894 [18] Bae H, Biswas A, Tadmor E.Analyticity and decay estimates of the Navier-Stokes equations in critical Besov spaces. Arch Ration Mech Anal, 2012, 205(3): 963-991 |