Acta mathematica scientia,Series B ›› 2023, Vol. 43 ›› Issue (1): 349-362.doi: 10.1007/s10473-023-0119-2
Previous Articles Next Articles
Xiuwei YIN
Received:
2021-05-12
Revised:
2022-06-23
Published:
2023-03-01
About author:
Xiuwei YIN,E-mail: xweiyin@163.com
Supported by:
Xiuwei YIN. AN INTEGRATION BY PARTS FORMULA FOR STOCHASTIC HEAT EQUATIONS WITH FRACTIONAL NOISE*[J].Acta mathematica scientia,Series B, 2023, 43(1): 349-362.
[1] Biagini F, Hu Y, Øksendal B, Zhang T.Stochastic Calculus for Fractional Brownian Motions and Applications. Springer, 2008 [2] Boufoussi B, Hajji S.Stochastic delay differential equations in a Hilbert space driven by fractional Brownian motions. Statist Probab Lett, 2017, 129: 222-229 [3] Cui J, Yan L.Controllability of neutral stochastic evolution equation driving by fractional Brownian motions. Acta Math Sci, 2017, 37B(1): 108-118 [4] Decreusefond L, Üstünel A S.Stochastic analysis of the fractional Brownian motions. Potential Anal, 1998, 10: 177-214 [5] Driver B.Integration by parts for heat kernel measures revisited. J Math Pures Appl, 1997, 76: 703-737 [6] Fan X L.Integration by parts formula and applications for SDEs driven by fractional Brownian motions. Stoch Anal Appl, 2015, 33: 199-212 [7] Fan X L.Stochastic Volterra equations driven by fractional Brownian motion. Front Math China, 2015, 10(3): 595-620 [8] Hu Y.Some recent progress on stochastic heat equations. Acta Math Sci, 2019, 39B: 874-914 [9] Hu Y, Nualart D.Stochastic heat equation driven by fractional noise and local time. Prob Theory Related Fields, 2009, 143: 285-328 [10] Huang X, Liu L X, Zhang S Q.Integration by parts formula for SPDEs with multiplicative noise and its applications. Stoch Dyn, 2019, 18(6): 1950024 [11] Mishura Y S.Stochastic calculus for fractional Brownian motions and related processes. Springer, 2008 [12] Nualart D, Ouknine Y.Regularization of quasilinear heat equations by a fractional noise. Stoch Dyn, 2004, 4: 201-221 [13] Wang F Y.Integration by parts formula and shift Harnack inequality for stochastic equations. Ann Probab, 2014, 42: 994-1019 [14] Wang F Y.Integration by parts formula and applications for SPDEs with jumps. Stochastic, 2016, 88: 737-750 [15] Wang F Y.Harnack Inequality for Stochastic Partial Differential Equations. Springer, 2013 [16] Walsh J.An Introduction to SPDEs, École d’été de Probabilités St Flour XIV, Lect Notes in Math, 1180. Springer, 1986 [17] Zhang S Q.Shift Harnack inequality and integration by part formula for semilinear SPDE. Front Math China, 2016, 11: 461-496 |
[1] | Xiaoxia SUN, Feng GUO. MARTINGALE REPRESENTATION AND LOGARITHMIC-SOBOLEV INEQUALITY FOR THE FRACTIONAL ORNSTEIN-UHLENBECK MEASURE [J]. Acta mathematica scientia,Series B, 2021, 41(3): 827-842. |
[2] | Soukaina DOUISSI, Khalifa ES-SEBAIY, Soufiane MOUSSATEN. ASYMPTOTICS OF THE CROSS-VARIATION OF YOUNG INTEGRALS WITH RESPECT TO A GENERAL SELF-SIMILAR GAUSSIAN PROCESS [J]. Acta mathematica scientia,Series B, 2020, 40(6): 1941-1960. |
[3] | Qian YU. A LIMIT LAW FOR FUNCTIONALS OF MULTIPLE INDEPENDENT FRACTIONAL BROWNIAN MOTIONS [J]. Acta mathematica scientia,Series B, 2020, 40(3): 734-754. |
[4] | Johanna GARZÓN, Samy TINDEL, Soledad TORRES. EULER SCHEME FOR FRACTIONAL DELAY STOCHASTIC DIFFERENTIAL EQUATIONS BY ROUGH PATHS TECHNIQUES [J]. Acta mathematica scientia,Series B, 2019, 39(3): 747-763. |
[5] | Yuecai HAN, Yifang SUN. SOLUTIONS TO BSDES DRIVEN BY BOTH FRACTIONAL BROWNIAN MOTIONS AND THE UNDERLYING STANDARD BROWNIAN MOTIONS [J]. Acta mathematica scientia,Series B, 2018, 38(2): 681-694. |
[6] | Junfeng LIU, Ciprian A. TUDOR. STOCHASTIC HEAT EQUATION WITH FRACTIONAL LAPLACIAN AND FRACTIONAL NOISE: EXISTENCE OF THE SOLUTION AND ANALYSIS OF ITS DENSITY [J]. Acta mathematica scientia,Series B, 2017, 37(6): 1545-1566. |
[7] | Guangjun SHEN, Xiuwei YIN, Litan YAN. ERRATUM TO:LEAST SQUARES ESTIMATION FOR ORNSTEIN-UHLENBECK PROCESSES DRIVEN BY THE WEIGHTED FRACTIONAL BROWNIAN MOTION [J]. Acta mathematica scientia,Series B, 2017, 37(4): 1173-1176. |
[8] | Jing CUI, Litan YAN. CONTROLLABILITY OF NEUTRAL STOCHASTIC EVOLUTION EQUATIONS DRIVEN BY FRACTIONAL BROWNIAN MOTION [J]. Acta mathematica scientia,Series B, 2017, 37(1): 108-118. |
[9] | Guangjun SHEN, Xiuwei YIN, Litan YAN. LEAST SQUARES ESTIMATION FOR ORNSTEIN-UHLENBECK PROCESSES DRIVEN BY THE WEIGHTED FRACTIONAL BROWNIAN MOTION [J]. Acta mathematica scientia,Series B, 2016, 36(2): 394-408. |
[10] | SHEN Guang-Jun, YAN Li-Tan, LIU Jun-Feng. POWER VARIATION OF SUBFRACTIONAL BROWNIAN MOTION AND APPLICATION [J]. Acta mathematica scientia,Series B, 2013, 33(4): 901-912. |
[11] | WANG Bao-Bin. CONVERGENCE RATE OF MULTIPLE FRACTIONAL STRATONOVICH TYPE INTEGRAL FOR HURST PARAMETER LESS THAN 1/2 [J]. Acta mathematica scientia,Series B, 2011, 31(5): 1694-1708. |
[12] | HU Yao-Zhong, Nualart David, XIAO Wei-Lin, ZHANG Wei-Guo. EXACT MAXIMUM LIKELIHOOD ESTIMATOR FOR DRIFT FRACTIONAL BROWNIAN MOTION AT DISCRETE OBSERVATION [J]. Acta mathematica scientia,Series B, 2011, 31(5): 1851-1859. |
[13] | SHEN Guang-Jun, CHEN Chao, YAN Li-Tan. REMARKS ON SUB-FRACTIONAL BESSEL PROCESSES [J]. Acta mathematica scientia,Series B, 2011, 31(5): 1860-1876. |
[14] | HU Yao-Zhong, WANG Bao-Bin. CONVERGENCE RATE OF AN APPROXIMATION TO MULTIPLE INTEGRAL OF FBM [J]. Acta mathematica scientia,Series B, 2010, 30(3): 975-992. |
[15] | Lin Zhengyan; Li Degui. STRONG APPROXIMATION FOR MOVING AVERAGE PROCESSES UNDER DEPENDENCE ASSUMPTIONS [J]. Acta mathematica scientia,Series B, 2008, 28(1): 217-224. |
|