Acta mathematica scientia,Series B ›› 2018, Vol. 38 ›› Issue (6): 1731-1750.
• Articles • Previous Articles Next Articles
Liya LIU1,2, Daqing JIANG2,3, Tasawar HAYAT3,4, Bashir AHMAD3
Received:
2017-08-29
Revised:
2018-04-23
Online:
2018-12-25
Published:
2018-12-28
Contact:
Daqing JIANG
E-mail:daqingjiang2010@hotmail.com
Supported by:
Liya LIU, Daqing JIANG, Tasawar HAYAT, Bashir AHMAD. DYNAMICS OF A HEPATITIS B MODEL WITH SATURATED INCIDENCE[J].Acta mathematica scientia,Series B, 2018, 38(6): 1731-1750.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Libbus M K, Phillips L M. Public health management of perinatal hepatitis B virus. Public Health Nursing, 2009, 26(4):353-361 [2] Williams R. Global challenges in liver disease. Hepatol, 2006, 44(3):521-526 [3] CDC. Public health service inter-agency guidelines for screening donors of blood, plasma, organs, tissues, and semen for evidence of hepatitis B and hepatitis C. MMWR, 1991, 40(RR-4):1-17 [4] Mann J, Roberts M. Modelling the epidemiology of hepatitis B in New Zealand. J Theoretical Biology, 2011, 269(1):266-272 [5] Thornley S, Bullen C, Roberts M. Hepatitis B in a high prevalence New Zealand population a mathematical model applied to infection control policy. Biol, 2008, 254:599-603 [6] Ma Z, Zhou Y, Wu J. Modeling and Dynamics of Infectious Diseases. Beijing:Higher Education Press, 2009 [7] Zhang J, Jin Z, Sun G Q, et al. Analysis of rabies in China:transmission dynamics and control. PloS One, 2011, 6(7):e20891 [8] Lin Y G, Jiang D Q, Jin M L. Stationary distribution of a stochastic SIR model with saturated incidence and its asymptotic stability. Acta Mathematica Scientia, 2015, 35B(3):619-629 [9] Zhang J, Li J, Ma Z. Global dynamics of an SEIR epidemic model with immigration of different compartments. Acta Mathematica Scientia, 2006, 26B(3):551-567 [10] Li J Q, Ma Z E. Global stability of an epidemic model with vaccination. Acta Mathematica Scientia, 2006, 26A(1):1-30 [11] Enatsu Y, Yukihiko Y, Muroya Y. Global stability of SIRS epidemic models with a class of nonlinear incidence rates and distributed delays. Acta Mathematica Scientia, 2012, 32B(3):851-865 [12] Anderson R M, May R M. Infectious Disease of Humans, Dynamics and Control. Oxford:Oxford University Press, 1991 [13] Zhao S J, Xu Z Y, Lu Y. A mathematical model of hepatitis B virus transmission and its application for vaccination strategy in China. International Journal of Epidemiology, 2000, 29(4):744-752 [14] Khan T, Zaman G, Algahtani O. Transmission dynamic and vaccination of hepatitis B epidemic model. WULFENIA J, 2015, 22(2):230-241 [15] Yang Q, Jiang D, Shi N, et al. The ergodicity and extinction of stochastically perturbed SIR and SEIR epidemic models with saturated incidence. J Math Anal Appl, 2012, 388:248-271 [16] Gray A, Greenhalgh D, Hu L, et al. A stochastic differential equation SIS epidemic model. SIAM J Appl Math, 2011, 71:876-902 [17] Allen L J S. An Introduction to stochastic epidemic models//Mathematical Epidemiology. Springer, 2008:81-130 [18] Lahrouz A, Settati A. Asymptotic properties of switching diffusion epidemic model with varying population size. Appl Math Comput, 2013, 219:11134-11148 [19] Lahrouz A, Settati A. Necessary and sufficient condition for extinction and persistence of SIRS system with random perturbation. Appl Math Comput, 2014, 233:10-19 [20] Lin Y G, Jiang D Q. Threshold behavior in a stochastic SIS epidemic model with standard incidence. J Dyn Diff Equ, 2014, 26:1079-1094 [21] Liu M, Bai C, Wang K. Asymptotic stability of a two-group stochastic SEIR model with infinite delays. Commun Nonlinear, 2014, 19:3444-3453 [22] Witbooi P J. Stability of an SEIR epidemic model with independent stochastic perturbations. Phys A, 2013, 392:4928-4936 [23] Herwaarden O A, Grasman J. Stochastic epidemics:major outbreaks and the duration of the endemic period. J Math Biol, 1995, 33:581-601 [24] Näsell I. Stochastic models of some endemic infections. Math Biosci, 2002, 179:1-19 [25] Dalal N, Greenhalgh D, Mao X, A stochastic model of AIDS and condom use. J Math Anal Appl, 2007, 325:36-53 [26] Imhof L, Walcher S, Exclusion and persistence in deterministic and stochastic chemostat models. J Differential Equations, 2005, 217:26-53 [27] Beddington J, May R. Harvesting natural populations in a randomly fluctuating environment. Science, 1977, 197:463-465 [28] Allen L J S. An Introduction to Mathematical Biology. USA:Pearson Education Ltd, 2007 [29] La Salle J, Lefschetz S. Stability by Liapunovs Direct Method with Applications. New York:Academic Press, 1961 [30] Mao X. Stochastic Differential Equations and Their Applications. Chichester:Horwood, 1997 [31] Mao X, Marion G, Renshaw E. Environmental noise suppresses explosion in population dynamics. Stoch Process Appl, 2002, 97:95-110 [32] Has'minskii R Z. Stochastic Stability of Differential Equations. Netherlands:Sijthoff and Noordhoff, Alphen aan den Rijn, 1980 [33] Ikeda N, Watanabe S. A comparison theorem for solutions of stochastic differential equations and its applications. Osaka J Math, 1977, 14:619-633 |
[1] | Haixiang ZHANG, Xuehua YANG, Da XU. ALTERNATING DIRECTION IMPLICIT OSC SCHEME FOR THE TWO-DIMENSIONAL FRACTIONAL EVOLUTION EQUATION WITH A WEAKLY SINGULAR KERNEL [J]. Acta mathematica scientia,Series B, 2018, 38(6): 1689-1711. |
[2] | Huanbin XUE, Jiye ZHANG. ROBUST EXPONENTIAL STABILITY OF SWITCHED DELAY INTERCONNECTED SYSTEMS UNDER ARBITRARY SWITCHING [J]. Acta mathematica scientia,Series B, 2018, 38(6): 1921-1938. |
[3] | Gui-Qiang G. CHEN, Matthew RIGBY. STABILITY OF STEADY MULTI-WAVE CONFIGURATIONS FOR THE FULL EULER EQUATIONS OF COMPRESSIBLE FLUID FLOW [J]. Acta Mathematica Scientia, 2018, 38(5): 1485-1514. |
[4] | Yonghui ZHOU, Yunrui YANG, Kepan LIU. STABILITY OF TRAVELING WAVES IN A POPULATION DYNAMIC MODEL WITH DELAY AND QUIESCENT STAGE [J]. Acta mathematica scientia,Series B, 2018, 38(3): 1001-1024. |
[5] | Shaojun TANG, Lan ZHANG. NONLINEAR STABILITY OF VISCOUS SHOCK WAVES FOR ONE-DIMENSIONAL NONISENTROPIC COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH A CLASS OF LARGE INITIAL PERTURBATION [J]. Acta mathematica scientia,Series B, 2018, 38(3): 973-1000. |
[6] | Janusz BRZDȨK, Krzysztof CIEPLINSKI. ON A FIXED POINT THEOREM IN 2-BANACH SPACES AND SOME OF ITS APPLICATIONS [J]. Acta mathematica scientia,Series B, 2018, 38(2): 377-390. |
[7] | A. M. NAGY, N. H. SWEILAM. NUMERICAL SIMULATIONS FOR A VARIABLE ORDER FRACTIONAL CABLE EQUATION [J]. Acta mathematica scientia,Series B, 2018, 38(2): 580-590. |
[8] | Jing FU, Daqing JIANG, Ningzhong SHI, Tasawar HAYAT, Ahmed ALSAEDI. QUALITATIVE ANALYSIS OF A STOCHASTIC RATIO-DEPENDENT HOLLING-TANNER SYSTEM [J]. Acta mathematica scientia,Series B, 2018, 38(2): 429-440. |
[9] | P. BASKAR, S. PADMANABHAN, M. SYED ALI. FINITE-TIME H∞ CONTROL FOR A CLASS OF MARKOVIAN JUMPING NEURAL NETWORKS WITH DISTRIBUTED TIME VARYING DELAYS-LMI APPROACH [J]. Acta mathematica scientia,Series B, 2018, 38(2): 561-579. |
[10] | Rakesh KUMAR, Anuj Kumar SHARMA, Kulbhushan AGNIHOTRI. STABILITY AND BIFURCATION ANALYSIS OF A DELAYED INNOVATION DIFFUSION MODEL [J]. Acta mathematica scientia,Series B, 2018, 38(2): 709-732. |
[11] | Zhaoxing YANG, Guobao ZHANG. GLOBAL STABILITY OF TRAVELING WAVEFRONTS FOR NONLOCAL REACTION-DIFFUSION EQUATIONS WITH TIME DELAY [J]. Acta mathematica scientia,Series B, 2018, 38(1): 289-302. |
[12] | Suiming SHANG, Yu TIAN, Yajing ZHANG. FLIP AND N-S BIFURCATION BEHAVIOR OF A PREDATOR-PREY MODEL WITH PIECEWISE CONSTANT ARGUMENTS AND TIME DELAY [J]. Acta mathematica scientia,Series B, 2017, 37(6): 1705-1726. |
[13] | Iz-iddine EL-FASSI, Janusz BRZDȨK, Abdellatif CHAHBI, Samir KABBAJ. ON HYPERSTABILITY OF THE BIADDITIVE FUNCTIONAL EQUATION [J]. Acta mathematica scientia,Series B, 2017, 37(6): 1727-1739. |
[14] | Qun LIU, Daqing JIANG, Ningzhong SHI, Tasawar HAYAT, Ahmed ALSAEDI. DYNAMICAL BEHAVIOR OF A STOCHASTIC HBV INFECTION MODEL WITH LOGISTIC HEPATOCYTE GROWTH [J]. Acta mathematica scientia,Series B, 2017, 37(4): 927-940. |
[15] | R. AGARWAL, S. HRISTOVA, P. KOPANOV, D. O'REGAN. IMPULSIVE DIFFERENTIAL EQUATIONS WITH GAMMA DISTRIBUTED MOMENTS OF IMPULSES AND P-MOMENT EXPONENTIAL STABILITY [J]. Acta mathematica scientia,Series B, 2017, 37(4): 985-997. |
|