Acta mathematica scientia,Series B ›› 2018, Vol. 38 ›› Issue (2): 377-390.doi: 10.1016/S0252-9602(18)30755-0
• Articles • Next Articles
Janusz BRZD?K1, Krzysztof CIEPLINSKI2
Received:
2016-04-12
Revised:
2017-06-06
Online:
2018-04-25
Published:
2018-04-25
Contact:
Krzysztof CIEPLINSKI
E-mail:cieplin@agh.edu.pl
Janusz BRZDȨK, Krzysztof CIEPLINSKI. ON A FIXED POINT THEOREM IN 2-BANACH SPACES AND SOME OF ITS APPLICATIONS[J].Acta mathematica scientia,Series B, 2018, 38(2): 377-390.
[1] Hyers D H, Isac G, Rassias Th M. Stability of Functional Equations in Several Variables. Boston:Birkhäuser, 1998 [2] Agarwal R P, Xu B, Zhang W. Stability of functional equations in single variable. J Math Anal Appl, 2003, 288(2):852-869 [3] Brillouët-Belluot N, Brzdȩk J, Ciepliński K. On some recent developments in Ulam's type stability. Abstr Appl Anal, 2012, Art ID 716936 [4] Brzdȩk J, Ciepliński K. Hyperstability and superstability. Abstr Appl Anal, 2013, Art ID 401756 [5] Brzdȩk J, Ciepliński K, Lésniak Z. On Ulam's type stability of the linear equation and related issues. Discrete Dyn Nat Soc, 2014, Art ID 536791 [6] Forti G L. Hyers-Ulam stability of functional equations in several variables. Aequationes Math, 1995, 50(1/2):143-190 [7] Jung S M. Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis. New York:Springer, 2011 [8] Miura T, Takahasi S, Choda H. On the Hyers-Ulam stability of real continuous function valued differentiable map. Tokyo J Math, 2001, 24(2):467-476 [9] Gähler S. Lineare 2-normierte Räume. Math Nachr, 1964, 28:1-43 [10] Gao J. On the stability of the linear mapping in 2-normed spaces. Nonlinear Funct Anal Appl, 2009, 14(5):801-807 [11] Cho Y J, Park C, Eshaghi Gordji M. Approximate additive and quadratic mappings in 2-Banach spaces and related topics. Int J Nonlinear Anal Appl, 2012, 3(2):75-81 [12] Chung S C, Park W G. Hyers-Ulam stability of functional equations in 2-Banach spaces. Int J Math Anal (Ruse), 2012, 6(17/20):951-961 [13] Ciepliński K. Approximate multi-additive mappings in 2-Banach spaces. Bull Iranian Math Soc, 2015, 41(3):785-792 [14] Ciepliński K, Surowczyk A. On the Hyers-Ulam stability of an equation characterizing multi-quadratic mappings. Acta Mathematica Scientia, 2015, 35B(3):690-702 [15] Ciepliński K, Xu T Z. Approximate multi-Jensen and multi-quadratic mappings in 2-Banach spaces. Carpathian J Math, 2013, 29(2):159-166 [16] Park W G. Approximate additive mappings in 2-Banach spaces and related topics. J Math Anal Appl, 2011, 376(1):193-202 [17] Brzdȩk J, Čadariu L, Ciepliński K. Fixed point theory and the Ulam stability. J Funct Spaces, 2014, Art ID 829419 [18] Ciepliński K. Applications of fixed point theorems to the Hyers-Ulam stability of functional equations-a survey. Ann Funct Anal, 2012, 3(1):151-164 [19] Xu B, Brzdȩk J, Zhang W. Fixed-point results and the Hyers-Ulam stability of linear equations of higher orders. Pacific J Math, 2015, 273(2):483-498 [20] Brzdȩk J, Chudziak J, Páles Zs. A fixed point approach to stability of functional equations. Nonlinear Anal, 2011, 74(17):6728-6732 [21] Brzdȩk J, Ciepliński K. A fixed point approach to the stability of functional equations in non-Archimedean metric spaces. Nonlinear Anal, 2011, 74(18):6861-6867 [22] Čadariu L, Gǎvrutą L, Gǎvrutą P. Fixed points and generalized Hyers-Ulam stability. Abstr Appl Anal, 2012, Art ID 712743 [23] Bahyrycz A, Brzdȩk J, Jab lónska E, Olko J. On functions that are approximate fixed points almost everywhere and Ulam's type stability. J Fixed Point Theory Appl, 2015, 17(4):659-668 [24] Kannappan Pl. Functional Equations and Inequalities with Applications. New York:Springer, 2009 [25] Kuczma M. An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensen's Inequality. Basel:Birkhäuser Verlag, 2009 [26] Sahoo P K, Kannappan Pl. Introduction to Functional Equations. Boca Raton:CRC Press, 2011 [27] Borelli Forti C. Solutions of a nonhomogeneous Cauchy equation. Rad Mat, 1989, 5(2):213-222 [28] Ebanks B R. Generalized Cauchy difference functional equations. Aequationes Math, 2005, 70(1-2):154-176 [29] Ebanks B R. Generalized Cauchy difference equations. Ⅱ. Proc Amer Math Soc, 2008, 136(11):3911-3919 [30] Ebanks B R, Kannappan Pl, Sahoo P K. Cauchy differences that depend on the product of arguments. Glasnik Mat Ser Ⅲ, 1992, 27(47)(2):251-261 [31] Fenyö I, Forti G-L. On the inhomogeneous Cauchy functional equation. Stochastica, 1981, 5(2):71-77 [32] Járai A, Maksa Gy, Páles Zs. On Cauchy-differences that are also quasisums. Publ Math Debrecen, 2004, 65(3-4):381-398 [33] Brzdȩk J. Hyperstability of the Cauchy equation on restricted domains. Acta Math Hungar, 2013, 141(1-2):58-67 [34] Brzdȩk J. Remarks on hyperstability of the Cauchy functional equation. Aequationes Math, 2013, 86(3):255-267 [35] Brzdȩk J. A hyperstability result for the Cauchy equation. Bull Aust Math Soc, 2014, 89(1):33-40 [36] Isac G, Rassias Th M. Functional inequalities for approximately additive mappings//Rassias Th M, Tabor, J Stability of Mappings of Hyers-Ulam Type. Palm Harbor:Hadronic Press, 1994:117-125 [37] Piszczek M. Remark on hyperstability of the general linear equation. Aequationes Math, 2014, 88(1-2):163-168 [38] Freese R W, Cho Y J. Geometry of Linear 2-normed Spaces. Hauppauge, NY:Nova Science Publishers, Inc, 2001 |
[1] | Wei SONG, Lin LI. CONTINUOUSLY DECREASING SOLUTIONS FOR A GENERAL ITERATIVE EQUATION [J]. Acta mathematica scientia,Series B, 2018, 38(1): 177-186. |
[2] | Iz-iddine EL-FASSI, Janusz BRZDȨK, Abdellatif CHAHBI, Samir KABBAJ. ON HYPERSTABILITY OF THE BIADDITIVE FUNCTIONAL EQUATION [J]. Acta mathematica scientia,Series B, 2017, 37(6): 1727-1739. |
[3] | Bashir AHMAD, Sotiris K. NTOUYAS, Jessada TARIBOON. A NONLOCAL HYBRID BOUNDARY VALUE PROBLEM OF CAPUTO FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS [J]. Acta mathematica scientia,Series B, 2016, 36(6): 1631-1640. |
[4] | Yuji LIU. PIECEWISE CONTINUOUS SOLUTIONS OF INITIAL VALUE PROBLEMS OF SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS WITH IMPULSE EFFECTS [J]. Acta mathematica scientia,Series B, 2016, 36(5): 1492-1508. |
[5] | Bouikhalene BELAID, Elqorachi ELHOUCIEN. SOLUTIONS AND STABILITY OF A GENERALIZATION OF WILSON'S EQUATION [J]. Acta mathematica scientia,Series B, 2016, 36(3): 791-801. |
[6] | Adnène ARBI, Farouk CHÉRIF, Chaouki AOUITI, Abderrahmen TOUATI. DYNAMICS OF NEW CLASS OF HOPFIELD NEURAL NETWORKS WITH TIME-VARYING AND DISTRIBUTED DELAYS [J]. Acta mathematica scientia,Series B, 2016, 36(3): 891-912. |
[7] | A. Vinodkumar, K. Malar, M. Gowrisankar, P. Mohankumar. EXISTENCE, UNIQUENESS AND STABILITY OF RANDOM IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS [J]. Acta mathematica scientia,Series B, 2016, 36(2): 428-442. |
[8] | Anna BAHYRYCZ, Magdalena PISZCZEK. ON APPROXIMATELY (p, q)-WRIGHT AFFINE FUNCTIONS AND INNER PRODUCT SPACES [J]. Acta mathematica scientia,Series B, 2016, 36(2): 593-601. |
[9] | Anna BAHYRYCZ, Krzysztof CIEPLINSKI, Jolanta OLKO. ON AN EQUATION CHARACTERIZING MULTI-CAUCHY-JENSEN MAPPINGS AND ITS HYERS-ULAM STABILITY [J]. Acta mathematica scientia,Series B, 2015, 35(6): 1349-1358. |
[10] | M. MURSALEEN, Khursheed J. ANSARI, Asif KHAN. STABILITY OF SOME POSITIVE LINEAR OPERATORS ON COMPACT DISK [J]. Acta mathematica scientia,Series B, 2015, 35(6): 1492-1500. |
[11] | Choonkil PARK. QUADRATIC ρ-FUNCTIONAL INEQUALITIES IN BANACH SPACES [J]. Acta mathematica scientia,Series B, 2015, 35(6): 1501-1510. |
[12] | A. AGHAJANI, M. MURSALEEN, A. SHOLE HAGHIGHI. FIXED POINT THEOREMS FOR MEIR-KEELER CONDENSING OPERATORS VIA MEASURE OF NONCOMPACTNESS [J]. Acta mathematica scientia,Series B, 2015, 35(3): 552-566. |
[13] | Krzysztof CIEPLINSKI, Angelika SUROWCZYK. ON THE HYERS-ULAM STABILITY OF AN EQUATION CHARACTERIZING MULTI-QUADRATIC MAPPINGS [J]. Acta mathematica scientia,Series B, 2015, 35(3): 690-702. |
[14] | Xieping DING. EQUILIBRIUM EXISTENCE FOR MULTI-LEADER-FOLLOWER GENERALIZED CONSTRAINED MULTIOBJECTIVE GAMES IN LOCALLY FC-UNIFORM SPACES [J]. Acta mathematica scientia,Series B, 2015, 35(2): 339-347. |
[15] | Zagharide Zine EL ABIDINE. COMBINED EFFECTS IN A SEMILINEAR POLYHARMONIC PROBLEM IN THE UNIT BALL [J]. Acta mathematica scientia,Series B, 2014, 34(5): 1404-1416. |
|