Acta mathematica scientia,Series B ›› 2018, Vol. 38 ›› Issue (6): 1712-1730.
• Articles • Previous Articles Next Articles
Kun CHENG1, Qi GAO2
Received:
2017-08-09
Revised:
2018-01-11
Online:
2018-12-25
Published:
2018-12-28
Contact:
Qi GAO
E-mail:gaoq@whut.edu.cn
Supported by:
Kun CHENG, Qi GAO. SIGN-CHANGING SOLUTIONS FOR THE STATIONARY KIRCHHOFF PROBLEMS INVOLVING THE FRACTIONAL LAPLACIAN IN RN[J].Acta mathematica scientia,Series B, 2018, 38(6): 1712-1730.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Alves C O, Corrêa F J S A, Ma T F. Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Comput Math Appl, 2005, 49:85-93 [2] Alves C O, Nóbrega A B. Nodal ground state solution to a biharmonic equation via dual method. J Differ Equ, 2016, 260:5174-5201 [3] Ambrosetti A, Rabinowitz P H. Dual variational methods in critical point theory and applications. J Funct Anal, 1973, 14:349-381 [4] Autuori G, Fiscella A, Pucci P. Stationary Kirchhoff problems involving a fractional operator and a critical nonlinearity. Nonlinear Anal, 2015, 125:699-714 [5] Barrios B, Colorado E, de Pablo A, Sánchez U. On some critical problem for the fractional Laplacian operator. J Differ Equ, 2012, 252:6133-6162 [6] Bartsch T, Liu Z, Weth T. Sign changing solutions of superlinear Schrödinger equations. Commun Partial Differ Equ, 2004, 29:25-42 [7] Bartsch T, Wang Z Q. Existence and multiplicity results for some superlinear elliptic problems on RN. Commun Partial Differ Equ, 1995, 20:1725-1741 [8] Bartsch T, Weth T. Three nodal solutions of singularly perturbed elliptic equations on domains without topology. Ann Inst H Poincaré Anal Non Linéaire, 2005, 22:259-281 [9] Bartsch T, Willem M. Infinitely many radial solutions of a semilinear elliptic problem on RN. Arch Ration Mech Anal, 1993, 124:261-276 [10] Cabré X, Sire Y. Nonlinear equations for fractional Laplacians Ⅱ:existence, uniqueness, and qualitative properties of solutions. Tran Amer Math Soc, 2011, 367:911-941 [11] Cabré X, Tan J. Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv Math, 2010, 224:2052-2093 [12] Caffarelli L, Silvestre L. An extension problem related to the fractional Laplacian. Commun Partial Differ Equ, 2007, 32:1245-1260 [13] Caffarelli L, Valdinoci E. Uniform estimates and limiting arguments for nonlocal minimal surfaces. Calc Var Partial Differ Equ, 2011, 41:203-240 [14] Cavalcanti M M, Domingos Cavalcanti V N, Soriano J A. Global existence and uniform decay rates for the Kirchhoff-Carrier equation with nonlinear dissipation. Adv Differential Equations, 2001, 6:701-730 [15] Chang S Y A, del Mar González M. Fractional Laplacian in conformal geometry. Adv Math, 2010, 226:1410-1432 [16] Chang X, Wang Z Q. Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian. J Differ Equ, 2014, 258:2965-2992 [17] Chipot M, Rodrigues J F. On a class of nonlocal nonlinear elliptic problems. RAIRO Modél Math Anal Numér, 1992, 26:447-467 [18] D'Ancona P, Spagnolo S. Global solvability for the degenerate Kirchhoff equation with real analytic data. Invent Math, 1992, 108:247-262 [19] Deng Y B, Peng S J, Shuai W. Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in R3. J Funct Anal, 2015, 269:3500-3527 [20] Di Nezza E, Palatucci G, Valdinoci E. Hitchhiker's guide to the fractional Sobolev spaces. Bull Sci Math, 2012, 136:521-573 [21] Fall M, Weth T. Nonexistence results for a class of fractional elliptic boundary value problems. J Funct Anal, 2012, 263:2205-2227 [22] Fiscella A, Valdinoci E. A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal, 2014, 44:156-170 [23] He X M, Zou W M. Infinitely many positive solutions for Kirchhoff-type problems. Nonlinear Anal, 2009, 70:1407-1414 [24] Jia H F, Li G B. Multiplicity and concentration behavior of positive solutions for Schrödinger-Kirchhoff type equations involving the p-Laplaciau in Rn. Acta Math Sci, 2018, 38B(2):391-418 [25] Kirchhoff G. Mechanik. Leipzig:Teubner, 1883 [26] Fractional quantum mechanics and Lvy path integrals. Phys Lett A, 2000, 268:298-305 [27] Laskin N. Fractional Schrödinger equation. Phys Rev, 2002, 66:56-108 [28] Lions J L. On some questions in boundary value problems of mathematical physics//Contemporary Developments in Continuum Mechanics and Partial Differential Equations. North-Holland Math Stud. Amsterdam, New York:North-Holland, 1978:284-346 [29] Li G B, Ye H Y. Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in R3. J Differ Equ, 2014, 257:566-600 [30] Mao A M, Zhang Z T. Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition. Nonlinear Anal, 2009, 70:1275-1287 [31] Mao A M, Luan S X. Sign-changing solutions of a class of nonlocal quasilinear elliptic boundary value problems. J Math Anal Appl, 2011, 383:239-243 [32] Miranda C. Un'osservazione su un teorema di Brouwer. Boll Un Mat Ital, 1940, 3:5-7 [33] Molica Bisci G, Rǎdulescu V, Servadei R. Variational Methods for Nonlocal Fractional Problems. Encyclopedia of Mathematics and its Applications 162, Cambridge, UK:Cambridge University Press, 2016 [34] Noussair E S, Wei J. On the effect of the domain geometry on the existence and profile of nodal solution of some singularly perturbed semilinear Dirichlet problem. Indiana Univ Math J, 1997, 46:1321-1332 [35] Nyamoradi N. Existence of three solutions for Kirchhoff nonlocal operators of elliptic type. Math Commum, 2013, 18:489-502 [36] Pucci P, Xiang M Q, Zhang B L. Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional p-Laplacian in RN. Calc Var Partial Differ Equ, 2015, 54:1-22 [37] Ros-Oton X, Serra J. The Dirichlet problem for the fractional Laplacian:regularity up to the boundary. J Math Pures Appl, 2012, 101:171-187 [38] Shuai W. Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains. J Differ Equ, 2015, 259:1256-1274 [39] Strauss W A. Existence of solitary waves in higher dimensions. Comm Math Phys, 1977, 55:149-162 [40] Servadei R, Valdinoci E. The Brezis-Nirenberg result for the fractional Laplacian. Trans Am Math Soc, 2015, 367:67-102 [41] Tan J. The Brezis-Nirenberg type problem involving the square root of the Laplacian. Calc Var Partial Differ Equ, 2011, 42:21-41 [42] Weth T, Energy bounds for entire nodal solutions of autonomous superlinear equations. Calc Var Partial Differ Equ, 2006, 27:421-437 [43] Willem M. Minimax Theorems. Basel:Birkhäuser, 1996 [44] Xiang M Q, Blscl G M, Tian G H, Zhang B L. Infinitely many solutions for the stationary Kirchhoff problems involving the fractional p-Laplacian. Nonlinearity, 2016, 29:357-374 [45] Xu L P, Chen H B. Multiplicity results for fourth order elliptic equations of Kirchhoff-type. Acta Math Sci, 2015, 35B(5):1067-1076 [46] Zhang Z T, Perera K. Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow. J Math Anal Appl, 2006, 317:456-463 |
[1] | Congming LI, Zhigang WU. RADIAL SYMMETRY FOR SYSTEMS OF FRACTIONAL LAPLACIAN [J]. Acta Mathematica Scientia, 2018, 38(5): 1567-1582. |
[2] | Wei DAI, Zhao LIU. CLASSIFICATION OF POSITIVE SOLUTIONS TO A SYSTEM OF HARDY-SOBOLEV TYPE EQUATIONS [J]. Acta mathematica scientia,Series B, 2017, 37(5): 1415-1436. |
[3] | Yanyan GUO. NONEXISTENCE AND SYMMETRY OF SOLUTIONS TO SOME FRACTIONAL LAPLACIAN EQUATIONS IN THE UPPER HALF SPACE [J]. Acta mathematica scientia,Series B, 2017, 37(3): 836-851. |
[4] | Ruirui YANG, Wei ZHANG, Xiangqing LIU. SIGN-CHANGING SOLUTIONS FOR p-BIHARMONIC EQUATIONS WITH HARDY POTENTIAL IN RN [J]. Acta mathematica scientia,Series B, 2017, 37(3): 593-606. |
[5] | Yongqiang XU, Zhong TAN, Daoheng SUN. MULTIPLICITY RESULTS FOR A NONLINEAR ELLIPTIC PROBLEM INVOLVING THE FRACTIONAL LAPLACIAN [J]. Acta mathematica scientia,Series B, 2016, 36(6): 1793-1803. |
[6] | Yan LI. NONEXISTENCE OF POSITIVE SOLUTIONS FOR A SEMI-LINEAR EQUATION INVOLVING THE FRACTIONAL LAPLACIAN IN RN [J]. Acta mathematica scientia,Series B, 2016, 36(3): 666-682. |
[7] | Jing ZHANG, Shiwang MA. INFINITELY MANY SIGN-CHANGING SOLUTIONS FOR THE BRÉZIS-NIRENBERG PROBLEM INVOLVING HARDY POTENTIAL [J]. Acta mathematica scientia,Series B, 2016, 36(2): 527-536. |
[8] | YE Zhuan. A NOTE ON GLOBAL WELL-POSEDNESS OF SOLUTIONS TO BOUSSINESQ EQUATIONS WITH FRACTIONAL DISSIPATION [J]. Acta mathematica scientia,Series B, 2015, 35(1): 112-120. |
[9] | WU Yuan-Ze, HUANG Yi-Sheng, LIU Zeng. SIGN-CHANGING SOLUTIONS FOR SCHRÖDINGER EQUATIONS WITH VANISHING AND SIGN-CHANGING POTENTIALS [J]. Acta mathematica scientia,Series B, 2014, 34(3): 691-702. |
[10] | TAN Zhong, XU Yong-Qiang. EXISTENCE AND NONEXISTENCE OF GLOBAL SOLUTIONS FOR A SEMI-LINEAR HEAT EQUATION WITH FRACTIONAL LAPLACIAN [J]. Acta mathematica scientia,Series B, 2012, 32(6): 2203-2210. |
|