Acta mathematica scientia,Series B

• Articles • Previous Articles     Next Articles

THE EXISTENCE OF GLOBAL SOLUTION AND THE BLOWUP PROBLEM FOR SOME p-LAPLACE HEAT EQUATIONS

Wang Yang   

  1. Department of Mathematics, East China Normal University, Shanghai 200062, China
  • Received:2003-12-30 Revised:2005-09-24 Online:2007-04-20 Published:2007-04-20
  • Contact: Wang Yang

Abstract:

This article consider, for the following
heat equation
$$\left\{
\begin{array}{ll}
\displaystyle\frac{u_t}{|x|^s}-\Delta_p u=u^q ,\ \ &(x,t) \in \Omega
\times (0,T),\\
u(x,t)= 0 ,&(x,t) \in \partial \Omega\times(0,T) ,\\
u(x,0)=u_0(x) ,& u_0(x)\ge 0,\quad u_0(x)\not\equiv0
\end{array}
\right. $$
the existence of global solution under some conditions and give two sufficient conditions
for the blow up of local solution in finite time, where $\Omega$ is a smooth bounded domain
in $R^N(N >p)$, $0\in \Omega ,\Delta_p u={\rm div}(|\nabla u|^{p-2}\nabla u),0\le s\le 2,
p\ge 2, p-1

CLC Number: 

  • 35K20
Trendmd