Acta mathematica scientia,Series B
• Articles • Previous Articles Next Articles
Wang Yang
Received:
Revised:
Online:
Published:
Contact:
Abstract:
This article consider, for the following heat equation $$\left\{ \begin{array}{ll} \displaystyle\frac{u_t}{|x|^s}-\Delta_p u=u^q ,\ \ &(x,t) \in \Omega \times (0,T),\\ u(x,t)= 0 ,&(x,t) \in \partial \Omega\times(0,T) ,\\ u(x,0)=u_0(x) ,& u_0(x)\ge 0,\quad u_0(x)\not\equiv0 \end{array} \right. $$ the existence of global solution under some conditions and give two sufficient conditions for the blow up of local solution in finite time, where $\Omega$ is a smooth bounded domain in $R^N(N >p)$, $0\in \Omega ,\Delta_p u={\rm div}(|\nabla u|^{p-2}\nabla u),0\le s\le 2, p\ge 2, p-1
CLC Number:
Wang Yang. THE EXISTENCE OF GLOBAL SOLUTION AND THE BLOWUP PROBLEM FOR SOME p-LAPLACE HEAT EQUATIONS[J].Acta mathematica scientia,Series B, 2007, 27(2): 274-282.
0 / / Recommend
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://121.43.60.238/sxwlxbB/EN/10.1016/S0252-9602(07)60026-5
http://121.43.60.238/sxwlxbB/EN/Y2007/V27/I2/274
Cited