[1] Aczél J, Dhombres J. Functional Equations in Several Variables. Vol 31 of Encyclopedia of Mathematics and its Applications. Cambridge, UK:Cambridge University Press, 1989 [2] Agarwal R P, Xu B, Zhang W. Stability of functional equations in single variable. J Math Anal Appl, 2003, 288:852-869 [3] Aoki T. On the stability of the linear transformation in Banach spaces. J Math Soc Japan, 1950, 2:64-66 [4] Bahyrycz A, Piszczek M. Hyperstability of the Jensen functional equation. Acta Math Hungar, 2014, 142(2014):353-365 [5] Bahyrycz A, Olko J. Hyperstability of general linear functional equation. Aequationes Math, 2015, 89:1461-1476 [6] Bourgin D G. Classes of transformations and bordering transformations. Bull Amer Math Soc, 1951, 57:223-237 [7] Brzdȩk J. Remarks on hyperstability of the the Cauchy equation. Aequations Math, 2013, 86:255-267 [8] Brzdȩk J. Hyperstability of the Cauchy equation on restricted domains. Acta Math Hungar, 2013, 141:58-67 [9] Brzdȩk J. A hyperstability result for the Cauchy equation. Bull Austral Math Soc, 2014, 89:33-40 [10] Brzdȩk J, Chudziak J, Páles Z. A fixed point approach to stability of functional equations. Nonlinear Anal, 2011, 74:6728-6732 [11] Brzdȩk J, Ciepliński K. Hyperstability and superstability. Abstr Appl Anal, 2003, 2013:Article ID 401756, 13 pp [12] Brzdȩk J, Fechner W, Moslehian M S, Sikorska J. Recent developments of the conditional stability of the homomorphism equation. Banach J Math Anal, 2015, 9:278-327 [13] EL-Fassi I, Kabbaj S, Charifi A. Hyperstability of Cauchy-Jensen functional equations. Indagationes Math, 2016, 27:855-867 [14] EL-Fassi Iz, Kabbaj S. On the hyperstability of a Cauchy-Jensen type functional equation in Banach spaces. Proyecciones J Math, 2015, 34:359-375 [15] Forti G L. Hyers-Ulam stability of functional equations in several variables. Aequationes Math, 1995, 50:143-190 [16] Gajda Z. On stability of additive mappings. Int J Math Math Sci, 1991, 14:431-434 [17] Gselmann E. Hyperstability of a functional equation. Acta Math Hung, 2009, 124:179-188 [18] Hyers D H. On the stability of the linear functional equation. Proc Nat Acad Sci USA, 1941, 27:222-224 [19] Lee Y H. On the stability of the monomial functional equation. Bull Korean Math Soc, 2008, 45:397-403 [20] Moszner Z. Stability has many names, Aequationes Math, 2016, 90:983-999 [21] Lee Y H, Jung S M, Rassias M Th. On an n-dimensional mixed type additive and quadratic functional equation. Appl Math Comp, 2014, 228:13-16 [22] Jung S M, Rassias M Th, Mortici C. On a functional equation of trigonometric type. Appl Math Comp, 2015, 252:294-303 [23] Park W G, Bae J H. Stability of a bi-additive functional equation in Banach modules over a C*-Algebra. Discrete Dyn Nat Soc, 2012, 2012:Article ID 835893, 12 pages [24] Piszczek M. Remark on hyperstability of the general linear equation. Aequationes Math, 2014, 88:163-168 [25] Rassias Th M. On the stability of the linear mapping in Banach spaces. Proc Amer Math Soc, 1978, 72:297-300 [26] Rassias Th M. On a modified Hyers-Ulam sequence. J Math Anal Appl, 1991, 158:106-113 [27] Rassias Th M, Šemrl P. On the behavior of mappings which do not satisfy Hyer s-Ulam stability. Proc Amer Math Soc, 1992, 114:989-993 [28] Ulam S M. Problems in Modern Mathematics, Chapter IV. Science ed. New York:Wiley, 1960 [29] Zhang D. On hyperstability of generalised linear functional equations in several variables. Bull Austral Math Soc, 2015, 92:259-267 [30] Zhang D. On Hyers-Ulam stability of generalized linear functional equation and its induced Hyers-Ulam programming problem. Aequationes Math, 2016, 90:559-568 |