[1] Altomare F, Campiti M. Korovkin-Type Approximation Theory and its Applications. Berlin, New York: W de Gruyter, 1994
[2] Aoki T. On the stability of linear transformation in Banach spaces. J Math Soc Japan, 1950, 2: 64-66
[3] Anastassiou G A, Gal S G. Approximation by complex Bernstein-Schurer and Kantorovich-Schurer polynomials in compact disks. Comput Math Appl, 2009, 58: 734-743
[4] Bota M, Karapinnar E,Mle?nit? O. Ulam-Hyers stability results for fixed point problems via - -contractive mapping in (b)-metric space. Abstr Appl Anal, 2013, Art ID 825293
[5] Bota M, Petru T P, Petru?el G. Hyers-Ulam stability and applications in guage spaces. Miskolc Math Notes, 2013, 14(1): 41-47
[6] Brillouët-Belluot N, Brzd?k J, Ciepliński K. On some recent developments in Ulam's type stability. Abstr Appl Anal, 2012, 2012: Article ID 716936
[7] Brzd?k J. Hyperstability of the Cauchy equation on resticted domains. Acta Math Hungar, 2013, 141: 58-67
[8] Brzd?k J, C?dariu L, Ciepliński K. Fixed point theory and the Ulam stability. J Function Spaces, 2014, 2014: Article ID 829419
[9] Brzd?k J, Jung S M. A note on stability of an operator linear equation of the second order. Abstr Appl Anal, 2011, 15: Article ID 602713
[10] Brzd?k J, Rassias Th M. Functional Equations in Mathematical Analysis. Springer, 2011
[11] Freud G. Orthogonal Polynomials. Budapest: Akademiai Kiado/Pergamon Press, 1966
[12] Gajda Z. On stability of additive mappings. Int J Math Math Sci, 1991, 14: 431-434
[13] Gal S G. Approximation by complex Lorentz polynomials. Math Commun, 2011, 16: 67-75
[14] Hatori O, Kobayasi K, Miura T, Takagi H, Takahasi S E. On the best constant of Hyers-Ulam stability. J Nonlinear Convex Anal, 2004, 5: 387-393
[15] Hirasawa G, Miura T. Hyers-Ulam stability of a closed operator in a Hilbert space. Bull Korean Math Soc, 2006, 43: 107-117
[16] Hyers D H. On the stability of the linear functional equation. Proc Natl Acad Sci, 1941, 27: 222-224
[17] Hyers D H, Isac G, Rassias Th M. Stability of Functional Equation in Several Variables. Basel: Birkhäuser, 1998
[18] Lorentz G G. Bernstein Polynomials. 2nd ed. New York: Chelsea Publ, 1986
[19] Lubinsky D S, Ziegler Z. Coefficients bounds in the Lorentz representation of a polynomial. Canad Math Bull, 1990, 33: 197-206
[20] Lupa? A. Die Folge der Betaoperatoren [D]. Univ Stuttgart, 1972
[21] Miura T, Miyajima M, Takahasi S E. Hyers-Ulam stability of linear differential operator with constant coefficients. Math Nachr, 2003, 258: 90-96
[22] Mohiuddine S A, Mursaleen M, Ansari K J. On the stability of fuzzy set-valued functional equations. Scientific World J, 2014, Article ID 392943
[23] Mursaleen M, Ansari K J. Stability results in intuitionistic fuzzy normed spaces for a cubic functional equation. Appl Math Inform Sci, 2013, 7(5): 1685-1692
[24] Petru?el A, Petru?el G, Urs C. Vector-valued metrics, fixed points and coupled fixed points for nonlinear operators. Fixed Point Theory Appl, 2013, 2013: 218
[25] Pólya G, Szegö G. Aufgaben und Lehrsätze aus der Analysis, I. Berlin: Springer, 1925
[26] Popa D, Ra?a I. The Fréchet functional equation with applications to the stability of certain operators. J Approx Theory, 2012, 164(1): 138-144
[27] Popa D, Ra?a I. On the stability of some classical operators from approximation theory. Expo Math, 2013, 31: 205-214
[28] Popa D, Ra?a I. On the best constant in Hyers-Ulam stability of some positive linear operators. J Math Anal Appl, 2014, 412: 103-108
[29] Rassias Th M. On the stability of the linear mappings in Banach spaces. Proc Amer Math Soc, 1978, 72: 297-300
[30] Rus I A. Remarks on Ulam stability of the operatorial equations. Fixed Point Theory, 2009, 10: 305-320
[31] Rus I A. Ulam stability of operatorial equations//Functional Equations in Mathematical Analysis. New York: Springer, 2012: 287-305
[32] Sintunavarat W. Genaralized Hyers-Ulam stability,well-posedness, and limit showding of fixed point problems for α-β-contraction mapping in metric spaces. Scientific World J, 2014, Article ID 569174
[33] Stancu D D. Asupra unei generaliz?ri a polinoamelor lui Bernstein. Stud Univ Babe?-Bolyai, 1969, 14: 31-45
[34] Takagi H, Miura T, Takahasi S E. Essential norms and stability constants of weighted composition operators on C(X). Bull Korean Math Soc, 2003, 40: 583-591
[35] Ulam S M. A Collection of Mathematical Problems. New York: Interscience, 1960
[36] Urs C. Ulam-Hyers stability for coupled fixed points of cntractive type operators. J Nonlinear Sci Appl, 2013, 6(2): 124-136 |