[1] Alber Y I. Metric and generalized projection operator in Banach spaces: properties and applications//Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. Vol 178 of Lecture Notes in Pure and Applied Mathematics. New York: Dekker, 1996: 15-50
[2] Byrne C. Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Problems, 2002, 18(2): 441-453
[3] Censor Y, Bortfeld T, Martin B, Trofimov A. A unified approach for inversion problem in intensitymodulated radiation therapy. Phys Med Biol, 2006, 51: 2353-2365
[4] Censor Y, Elfving T, Kopf N, Bortfeld T. The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Problems, 2005, 21(6): 2071-2084
[5] Censor Y, Elfving T. A multiprojection algorithm using Bregman projections in a product space. Numerical Algorithms, 1994, 8(2-4): 221-239
[6] Censor Y, Lent A. An iterative row-action method for interval convex programming. J Optim Theory Appl, 1981, 34: 321-353
[7] Censor Y, Motova A, Segal A. Perturbed projections and subgradient projections for the multiple-sets split feasibility problem. J Math Anal Appl, 2007, 327(2): 1244-1256
[8] Censor Y, Segal A. The split common fixed point problem for directed operators. J Convex Anal, 2009, 16(2): 587-600
[9] Cioranescu I. Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems. Dordrecht: Kluwer, 1990
[10] Dunford N, Schwartz J T. Linear Operators I. New York: Wiley Interscience, 1958
[11] Maingé P E. Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization. Set-Valued Anal, 2008, 16: 899-912
[12] Martín-Márquez V, Reich S, Sabach S. Right Bregman nonexpansive operators in Banach spaces. Nonlinear Analy, 2012, 75: 5448-5465
[13] Martín-Márquez V, Reich S, Sabach S. Bregman strongly nonexpansive operators in reflexive Banach spaces. J Math Anal Appl, 2013, 400: 597-614
[14] Masad E, Reich S. A note on the multiple-set split convex feasibility problem in Hilbert space. J Nonlinear Convex Anal, 2007, 8(3): 367-371
[15] Moudafi A. The split common fixed-point problem for demicontractive mappings. Inverse Problems, 2010, 26(5): Article ID 055007
[16] Moudafi A. A note on the split common fixed-point problem for quasi-nonexpansive operators. Nonlinear Anal, 2011, 74(12): 4083-4087
[17] Nakajo K, Takahashi W. Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups. J Math Anal Appl, 2003, 279: 372-379
[18] Phelps R P. Convex Functions, Monotone Operators, and Differentiability. 2nd ed. Berlin: Springer-Verlag, 1993
[19] Schöpfer F. Iterative Regularisation Method for the Solution of the Split Feasibility Problem in Banach Spaces[D]. Saabrü cken, 2007
[20] Schöpfer F, Schuster T, Louis A K. An iterative regularization method for the solution of the split feasibility problem in Banach spaces. Inverse Problems, 2008, 24(5): 055008
[21] Shehu Y, Iyiola O S, Enyi C D. Iterative algorithm for split feasibility problems and fixed point problems in Banach spaces. Numer Algor, DOI: 10.1007/s11075-015-0069-4
[22] Shehu Y, Ogbuisi F U, Iyiola O S. Convergence Analysis of an iterative algorithm for fixed point problems and split feasibility problems in certain Banach spaces. Optimization, DOI: 10.1080/02331934.2015.1039533
[23] Takahashi W. Nonlinear Functional Analysis-Fixed Point Theory and Applications. Yokohama: Yokohama Publishers Inc, 2000(in Japanese)
[24] Takahashi W. Nonlinear Functional Analysis. Yokohama: Yokohama Publishers, 2000
[25] Wang F. A new algorithm for solving the multiple sets split feasibility problem in Banach spaces. Numerical Functional Anal Opt, 2014, 35(1): 99-110
[26] Wang F, Xu H K. Cyclic algorithms for split feasibility problems in Hilbert spaces. Nonlinear Anal, 2011, 74(12): 4105-4111
[27] Xu H K. Iterative algorithms for nonlinear operators. J London Math Soc, 2002, 66(2): 240-256
[28] Xu H K. A variable Krasnosel'skii-Mann algorithm and the multiple-set split feasibility problem. Inverse Problems, 2006, 22(6): 2021-2034
[29] Xu H K. Iterative methods for the split feasibility problem in infinite dimensional Hilbert spaces.t Inverse Problems, 2010, 26(10): Article ID 105018
[30] Yang Q. The relaxed CQ algorithm solving the split feasibility problem. Inverse Problems, 2004, 20(4): 1261-1266
[31] Zegeye H, Shahzad N. Convergence Theorems for Right Bregman Strongly Nonexpansive Mappings in Reflexive Banach Spaces. Abstr Appl Anal, 2014, 2014: Article ID 584395
[32] Zhao J, Yang Q. Several solution methods for the split feasibility problem. Inverse Problems, 2005, 21(5): 1791-1799 |