[1] Ferrero A, Gazzola F. Existence of solutions for singular critical growth semilinear elliptic equations. J Differential Equations, 2001, 177: 494--522
[2] Abdellaoui B, Peral I. Some results for semilinear elliptic equations with critical potential. Proc Royal Edinb, 2002, 132A: 1--24
[3] Jannelli E. The role played by space dimension in elliptic critical problems. J Differential Equations, 1999, 156: 407--426
[4] Cao D, Han P. Solutions for semilinear elliptic equations with critical exponents and Hardy potential. J Differential Equations, 2004, 205(2): 521--537
[5] Han P. Asymptotic behavior of solutions to semilinear elliptic equations with Hardy potential. Proc Amer Math Soc, 2007, 135(2): 365--372
[6] Adimurthi, Chaudhuri N, Ramaswamy M. An improved Hardy-Sobolev inequality and its applications. Proc Amer Math Soc, 2002, 130: 489--505
[7] Vazquez J L, Zuazua E. The Hardy inequality and the asymptotic behavior of the heat equation with an inverse-square potential. J Funct Anal, 2000, 173: 103--153
[8] Brézis H, Vázquez J L. Blow-up solutions of some nonlinear elliptic problem. Rev Mat Complut, 1997, 10: 443--469
[9] Schter M. Wenming Zou. Sign-changing critical points from linking type theorems. Tran Amer Math Soc, 2006, 358(12): 5293--5318
[10] Zou Wenming. On finding sign-changing solutions. J Funct Anal, 2005, 219: 433--468
[11] Shen Yaotian. The Dirichlet problem for degenerate or singular elliptic equations of high order. J China Univ Tech, 1980, 10: 15--25 (in Chinese)
[12] Shen Yaotian, Guo Xinkang. Weighted poncaré inequalities on unbounded domains and nonlinear elliptic boundary value problems. Acta Math Sci, 1984, 4(3): 277--286
[13] Shen Yaotian, Chen Zhihui. Sobolev-Hardy space with general weight. J Math Anal Appl, 2006, 320: 675--690
[14] Shen Yaotian, Yao Yangxin. Nonlinear elliptic equations with critical potential and critical paramwter. Proc Royal Edinb, 2006, 136A: 1041--1051
[15] Dinca G, Jebelean P, Mawhin J. Variational and topological methods for Dirichlet problems with p-Laplacian.
Portugaliae Mathematica (Nova S\'erie), 2001, 58(3): 339--378
[16] Michel Willem. Minimax Theorems. Boston: Birkhäuser, 1996
|