Acta mathematica scientia,Series B ›› 2010, Vol. 30 ›› Issue (1): 113-124.doi: 10.1016/S0252-9602(10)60027-6

• Articles • Previous Articles     Next Articles

MULTIPLE AND SIGN-CHANGING SOLUTIONS FOR NONLINEAR ELLIPTIC EQUATION WITH CRITICAL POTENTIAL AND CRITICAL PARAMETER

 WANG You-Jun, SHEN Yao-Tian   

  1. School of Mathematical Sciences, South China University of Technology, Guangzhou 510640, China
  • Received:2007-12-29 Online:2010-01-20 Published:2010-01-20
  • Supported by:

    Project supported by the National Science Foundation of China (10471047) and the Natural Science Foundation of Guangdong Province (04020077).

Abstract:

Some embedding inequalities in Hardy-Sobolev space are proved. Furthermore, by the improved inequalities and the linking theorem, in a new k-order Sobolev-Hardy space, we obtain the existence of sign-changing solutions for the nonlinear elliptic equation
\left\{

\dispΔ(k)u:=Δu(N2)24u|x|214i=1k1u|x|2(ln(i)R/|x|)2=f(x,u),xΩ,u=0,xΩ,
   \right.
where 0\in \Omega \subset B_a(0)\subset {\Bbb R}^N, N\geq 3, \ln_{(i)}=\prod\limits_{j=1}^i\ln^{(j)},  and R=ae^{(k-1)}, where e^{(0)}=1,  e^{(j)}=e^{e^{(j-1)}} for j\geq 1, \ln^{(1)}=\ln,  \ln^{(j)}=\ln\ln^{(j-1)}  for j\geq 2. Besides, positive and negative solutions are obtained by a variant mountain pass theorem.

Key words: nonlinear elliptic equation, critical potential, linking

CLC Number: 

  • 46E35
Trendmd