[1] Ashbaugh M S. Isoperimetric and universal inequalities for eigenvalues//Davies E B, Safarov Yu, eds. Spectral Theory and Geometry, Vol 273. Edinburgh: London Math Soc Lecture Notes, 1999: 95--139
[2] Cheng Q M, Yang H C. Estimates on eigenvalues of Laplacian. Math Ann, 2005, 331: 445--460
[3] Cheng Q M, Yang H C. Inequalities for eigenvalues of a clamped plate problem. Trans Amer Math Soc, 2006, 358(6): 2625--2635
[4] Gilkey P B. The spectral geometry of the higher order Laplacian. Duke Math J, 1980, 47(3): 511--528
[5] Gu Y G. The eigenvalue problems of elliptic equations of higher order. Acta Math Sci, 1991, 11: 361--367
[6] Hörmander L. Hypoelliptic second order differential equations. Acta Math, 1967, 119: 147--171
[7] Huang G Y, Ma Bingqing. Estimates on eigenvalues on compact homogeneous Riemannian manifolds. J Henan Norm Univ Nat Sci, 2008, 36: 9--11
[8] Huang G Y, Chen L, Sun X M. Extrinsic eigenvalue estimates of Dirac operators on Riemannian manifolds. Math Nachr, (To appear)
[9] Huang G Y, Chen W Y. Universal bounds for eigenvalues of Laplacian operator with any order. Acta Math Sci, 2010, 30B(3)
[10] Jerison D S. The Dirichlet problem for the Kohn Laplacian on the Heisenberg group I. J Funct Anal, 1981, 43: 97--142
[11] Kohn J J. Boundaries of complex manifolds//Proc Conf Complex Analysis (Minneapolis, 1964). Berlin: Springer Verlag, 1965: 81--94
[12] Niu P C, Zhang H Q. Payne-Polya-Weinberger type inequalities for eigenvalues of nonelliptic operators. Pacific J Math, 2003, 208: 325--345
[13] Soufi A El, Harrell II E M, Ilias S. Universal inequalities for the eigenvalues of Laplace and Schrödinger operators on submanifolds. Amer Math Soc, 2009, 361(5): 2337--2350
[14] Wang Q L, Xia C Y. Universal bounds for eigenvalues of the biharmonic operator on Riemannian manifolds. J Funct Anal, 2007, 245: 334--352
[15] Wang Q L, Xia C Y. Universal bounds for eigenvalues of Schrödinger operator on Riemannian manifolds. Ann Acad Sci Fenn Math, 2008, 33: 319--336
[16] Wu F E, Cao L F. Estimates for eigenvalues of Laplacian operator with any order. Science in China, Ser A, 2007, 50: 1078--1086
|