Acta mathematica scientia,Series B
• Articles • Previous Articles
Yang Changsen
Received:
Revised:
Online:
Published:
Contact:
Abstract:
Furuta showed that if A ≥ B ≥0, then for each r≥0, f(p)=(Ar/2BpAr/2)t+r/p+r is decreasing for p≥t≥0. Using this result, the following inequality (Cr/2AB2A)δCr/2)p-1+r/4δ+r≤Cp-1+r is obtained for 0<p≤1, r≥1, 1/4≤δ≤1 and three positive operators A, B, C satisfy (A1/2 B A1/2)p/2 ≤ Ap, (B1/2 AB1/2)p/2 ≥ Bp, (C1/2 AC1/2)p/2 ≤Cp, (A1/2 CA1/2)p/2≥Ap.
Key words: Positive operator, Furuta inequality, operator inequality
CLC Number:
Yang Changsen. AN ORDER PRESERVING INEQUALITY FOR THREE OPERATORS VIA FURUTA INEQUALITY[J].Acta mathematica scientia,Series B, 2008, 28(4): 998-002.
0 / / Recommend
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://121.43.60.238/sxwlxbB/EN/10.1016/S0252-9602(08)60099-5
http://121.43.60.238/sxwlxbB/EN/Y2008/V28/I4/998
Cited