[1] Adimurthi. Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the n-Laplacian. Ann Scuola Norm Sup Pisa, 1990, 17:393-413 [2] Adimurthi, Sandeep K. A singular Moser-Trudinger embedding and its applications. Nonl Differ Equ Appl, 2007, 13:583-603 [3] Adimurthi, Struwe M. Global compactness properties of semilinear elliptic equations with critical exponential growth. J Funct Anal, 2000, 175:125-167 [4] Degiovanni M, Lancelotti S. Linking over cones and nontrival solutions for p-Laplace equations with psuperlinear nonlinearity. Ann Inst H Pioncaré Anal Non Linéaire, 2007, 24:907-919 [5] Degiovanni M, Lancelotti S. Linking solutions for p-Laplace equations with nonlinearity at critical growth. J Funct Anal, 2009, 256:3643-3659 [6] Degiovanni M, Magrone P. Linking solutions for quasilinear equations at critical growth involving the "1-Laplace" operator. Calc Var Partial Diff Equ, 2009, 36:591-609 [7] de Souza M, do Ó J M. On a singular and nonhomogeneous N-Laplacian equation involving critical growth. J Math Anal Appl, 2011, 380:241-263 [8] Di Bendetto E. C1,α local regularity of weak solutions of degenerate elliptic equtions. Nonlinear Anal, 1983, 7:486-490 [9] do Ó J M. Semilinear Dirichlet problem for the N-Laplacian in RN with nonlinearities in the critical growth range. Diff Integral Equ, 1996, 9:967-979 [10] Drábek P, Robinson S B. Resonance problems for the p-Laplacian. J Funct Anal, 1999, 169:189-200 [11] Fadell E R, Rabinowitz P H. Generalized cohomological index theoreies for Lie group actions with an application to bifurcation question for Hamiltonian systems. Invent Math, 1978, 45:139-174 [12] Guedda M, Veron L. Quasilinear elliptic equations involving critical Sobolev exponents. Nonlinear Anal, 1989, 13:879-902 [13] Heinonen J. Lectures on Analysis on Metric Spaces. New York:Springer-Verlag, 2001 [14] Lindqvist P. On the equation div(|▽u|p-2|▽u|)+λ|u|p-2u=0. Proc Amer Math Soc, 1990, 109:157-164 [15] Lions P L. The concentration-compactness principle in the Calculus of Variations, The limit case, Part I. Rev Mat Iberoam, 1985, 1:145-201 [16] Moser J. A sharp form of an inequality by N. Trudinger. Indiana Univ Math, 1971, 20:1077-1092 [17] Panda P. On semilinear Neumann problems with critical growth for the N-Laplacian. Nonlinear Anal, 1996, 26:1347-1366 [18] Perera K, Agarwal R P, O'Regan D. Morse Theoretic Aspects of p-Laplacian Type Operators. Providence, RI:Amer Math Soc, 2010 [19] Perera K, Szulkin A. p-Laplacian problems where the nonlinearity acrosses an eigenvalue. Discrete Contin Dyn Syst, 2005, 13:743-753 [20] Trudinger N S. On imbedding onto Orlicz spaces and some applications. J Math Mech, 1967, 17:473-484 [21] Wang Z, Zhou H. Solutions for a nonhomogeneous elliptic problem involving critical Sobolev-Hardy exponent in RN. Acta Math Sci, 2006, 26B(3):525-536 [22] Zhang G, Shao J, Liu S. Linking Solutions for N-Laplace elliptic equations with Hardy-Sobolev operator and indefinite weights. Comm Pure Appl Anal, 2011, 10:571-581 |