Acta mathematica scientia,Series B
• Articles • Previous Articles Next Articles
Zhang Zhijiun
Received:
Revised:
Online:
Published:
Contact:
Abstract:
By Karamata regular variation theory and constructing comparison functions, the author shows the existence and global optimal asymptotic behaviour of solutions for a semilinear elliptic problem △u=k(x)g(u), u>0, x in Omega, u|_{\partial \Omega}=+∞, where Omega is a bounded domain with smooth boundary in RN; g ∈ C1[0,∞), g(0)=g'(0)=0, and there exists p>1, such that $\lim\limits_{s\rightarrow \infty}\frac {g(s \xi)}{g(s)}=\xi^p$, $\forall \ \xi>0$, and $k \in C_{\rm loc}^\alpha(\Omega)$ is non-negative non-trivial in Omega which may be singular on the boundary.
Key words: Semilinear elliptic equations, explosive subsolutions, explosive supersolutions, existence, the global optimal asymptotic behaviour
CLC Number:
Zhang Zhijiun. THE EXISTENCE AND GLOBAL OPTIMAL ASYMPTOTIC BEHAVIOUR OF LARGE SOLUTIONS FOR A SEMILINEAR ELLIPTIC PROBLEM[J].Acta mathematica scientia,Series B, 2008, 28(3): 595-603.
0 / / Recommend
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://121.43.60.238/sxwlxbB/EN/10.1016/S0252-9602(08)60062-4
http://121.43.60.238/sxwlxbB/EN/Y2008/V28/I3/595
Cited