[1] Sun G Q, Zhang G, Jin Z, Li L, et al. Predator cannibalism can give rise to regular spatial pattern in a predator-prey system. Nonlinear Dynam, 2009, 58(1):75-84 [2] Huang J H, Lu G, Ruan S G, et al. Existence of traveling wave solutions in a diffusive predator-prey model. J Math Biol, 2003, 46(2):132-152 [3] Yi F Q, Wei J J, Shi J P, et al. Bifurcation and spatiotemporal patterns in homogeneous diffusive predatorprey system. J Differential Equ, 2009, 246(5):1944-1977 [4] Garvie M R, Trenchea C. Spatiotemporal dynamics of two generic predator-prey models. J Biol Dynamics, 2010, 4(6):559-570 [5] Akhmeta M U, Beklioglub M, Ergenca T, Tkachenkoc V I, et al. An impulsive ratio-dependent predatorprey system with diffusion. Nonlinear Anal RWA, 2006, 7(5):1255-1267 [6] Dancer E N, Du Y H. Effects of certain degeneracies in the predator-prey model. SIAM J Math Anal, 2002, 34(2):292-314 [7] Du Y H, Lou Y. Some uniqueness and exact multiplicity results for a predator-prey model. Trans Amer Math Soc, 1997, 349(6):2443-2475 [8] Du Y H, Lou Y. S-shaped global bifurcation curve and Hopf bifurcation of positive solution to a predatorprey model. J Differential Equ, 1998, 144(2):390-440 [9] Du Y H, Wang M X. Asymptotic behaviour of positive steady states to a predator-prey model. Proc R Soc Edinb A, 2006, 136(4):759-778 [10] Hsu S B, Huang T W. Global stability for a class of predator-prey systems. SIAM J Appl Math, 1995, 55(3):763-783 [11] Jia Y F, Wu J H, Nie H, et al. The coexistence states of a predator-prey model with nonmonotonic functional response and diffusion. Acta Appl Math, 2009, 108(2):413-428 [12] Jia Y F, Xu H K, Agarwal R P, et al. Existence of positive solutions for a prey-predator model with refuge and diffusion. Appl Math Comput, 2011, 217(21):8264-8276 [13] Kadota T, Kuto K. Positive steady states for a prey-predator model with some nonlinear diffusion terms. J Math Anal. Appl, 2006, 323(2):1387-1401 [14] Kuang Y, Beretta B. Global qualitative analysis of a ratio-dependent predator-prey system. J Math Biol, 1998, 36(4):389-406 [15] Kuto K. Stability of steady-state solutions to a prey-predator system with cross-diffusion. J Differential Equ, 197(2):293-314 [16] Ma Z P, Li W T. Bifurcation analysis on a diffusive Holling-Tanner predator-prey model. Appl Math Modelling, 2013, 37(37):4371-4384 [17] Nakashima K, Yamada Y. Positive steady states for prey-predator models with cross-diffusion. Adv Differential Equ, 1996, 1(6):1099-1122 [18] Ruan S G, Xiao D M. Global analysis in a predator-prey system with nonmonotonic functional response. SIAM J Appl Math, 2001,61(4):1445-1472 [19] Shi H B, Li W T, Lin G, et al. Positive steady states of a diffusion predator-prey system with modified Holling-Tanner function response. Nonlinear Anal RWA, 2010,11(5):3711-3721 [20] Yamada Y. Stability of steady states for prey-predator diffusion equations with homogeneous Dirichlet conditions. SIAM J Math Anal, 1990, 21(2):327-345 [21] Zhou J. Positive steady state solutions of a Leslie-Gower predator-prey model with Holling type Ⅱ functional response and density-dependent diffusion. Nonlinear Anal TMA, 2013, 82(9):47-65 [22] Yang L, Zhang Y M. Positive steady states and dynamics for a diffusive predator-prey system with a degeneracy. Acta Math Sci, 2016, 36B(2):537-548 [23] Zhou W S, Zhao H X, Wei X D, Xu G K, et al. Existence of positive steady states for a predator-prey model with diffusion. Comm Pure Appl Anal, 2013, 12(5):2189-2201 [24] Lou Y, Wang B. Local dynamics of a diffusive predator-prey model in spatially heterogeneous environment. J Fixed Point Theory Appl, 2017, 19(1):755-772 [25] Du Y H, Hsu S B. A diffusive predator-prey model in heterogeneous environment. J. Differential Equ, 2004, 203(2):331-364 [26] Du Y H, Shi J P. Some recent results on diffusive predator-prey models in spatially heterogeneous envionment//Nonlinear Dynamics and Evolution Equations. Providence, RI:Amer Math Soc, 2006:95-135 [27] Du Y H, Shi J P. Allee effect and bistability in a spatially heterogenous predator-prey model. Trans Amer Math Soc, 2007, 359(9):4557-4593 [28] Wang B, Zhang Z C. Bifurcation analysis of a diffusive predator-prey model in spatially heterogeneous environment. Electron J Qual Theo, 2017, 2017(42):1-17 [29] Lou Y, Ni W M. Diffusion, self-diffusion and cross-diffusion. J Differential Equ, 1996, 131(1):79-131 [30] Lin C S, Ni W M, Takagi I, et al. Large amplitude stationary solutions to a chemotais systems. J Differential Equ, 1988, 72(1):1-27 [31] Gilbarg D, Trudinger N S. Elliptic Partial Differential Equation of Second Order. 2nd ed. Berlin:SpringerVerlag, 1983 [32] Nirenberg L. Topics in Nonlinear Functional Analysis. Providence, RI:American Mathematical Society, 2001 [33] Pang P Y H, Wang M X. Non-constant positive steady-states of a predator-prey system with non-monotonic functional response and diffusion. Proc Lond Math Soc, 2004, 88(1):135-157 [34] Peng R, Wang M X. Positive steady-states of the Holling-Tanner prey-predator model with diffusion. Proc R Soc Edinb. A, 2005, 135(1):149-164 |