Acta mathematica scientia,Series B ›› 2018, Vol. 38 ›› Issue (1): 125-150.doi: 10.1016/S0252-9602(17)30121-2
• Articles • Previous Articles Next Articles
Yingbo LIU1,2, Ingo WITT3
Received:
2016-12-28
Revised:
2017-04-15
Online:
2018-02-25
Published:
2018-02-25
Supported by:
The research of LIU was partially supported by the NSFC (11571177) and the Priority Academic Program Development of Jiangsu Higher Education Institutions. The research of WITT was partially funded by the DFG through the Sino-German Project "Analysis of PDEs and Applications".
Yingbo LIU, Ingo WITT. SMALL DATA SOLUTIONS OF 2-D QUASILINEAR WAVE EQUATIONS UNDER NULL CONDITIONS[J].Acta mathematica scientia,Series B, 2018, 38(1): 125-150.
[1] Alinhac S. The null condition for quasilinear wave equations in two space dimensions I. Invent Math, 2001, 145(3):597-618 [2] Hoshiga A. The initial value problems for quasi-linear wave equations in two space dimensions with small data. Adv Math Sci Appl, 1995, 5(1):67-89 [3] Katayama S. Global existence for systems of nonlinear wave equations in two space dimensions Ⅱ. Publ RIMS, 1995, 31:645-665 [4] Katayama S. Lifespan of solutions for two space dimensional wave equations with cubic nonlinearity. Comm Paritial Differ Equ, 2001, 26:205-235 [5] Li T T, Zhou Y. Life-span of classical solutions to nonlinear wave equations in two-space-dimensions Ⅱ. J Partial Differ Equ, 1993, 6:17-38 [6] Alinhac S. Blowup of small data solutions for a class of quasilinear wave equations in two space dimensions Ⅱ. Acta Math, 1999, 182(1):1-23 [7] Alinhac S. The null condition for quasilinear wave equations in two space dimensions Ⅱ. Amer J Math, 2001, 123(6):1071-1101 [8] Godin P. Lifespan of solutions of semilinear wave equations in two space dimensions. Comm Partial Differ Equ, 1993, 18(5/6):895-916 [9] Hörmander L. The lifespan of classical solutions of nonlinear hyperbolic equations. Pseudodifferential operators//Lecture Notes in Math, 1256. Berlin:Springer, 1987:214-280 [10] Hörmander L. Lectures on Nonlinear Hyperbolic Equations, Mathematiques & Applications 26. Heidelberg:Springer-Verlag, 1997 [11] Lei Z. Global well-posedness of incompressible elastodynamics in two dimensions. Comm Pure Appl Math, 2016, 69(11):2072-2106 [12] Lei Z, Sideris T C, Zhou Y. Almost global existence for 2-D incompressible isotropic elastodynamics. Trans Amer Math Soc, 2015, 367(11):8175-8197 [13] Li T T, Zhou Y. Life-span of classical solutions to nonlinear wave equations in two space dimensions. J Math Pures Appl, 1994, (9)73(3):223-249 [14] Li T T, Zhou Y. Nonlinear stability for two-space-dimensional wave equations with higher-order perturbations. Nonlinear World, 1994, 1(1):35-58 [15] Klainerman S. Remarks on the global Sobolev inequalities in the Minkowski space Rn+1. Comm Pure Appl Math, 1987, 40:111-117 [16] Klainerman S, Ponce G. Global, small amplitude solutions to nonlinear evolution equations. Comm Pure Appl Math, 1983, 36(1):133-141 [17] Lindblad H. On the lifespan of solutions of nonlinear wave equations with small initial data. Comm Pure Appl Math, 1990, 43(4):445-472 [18] Christodoulou D. Global solutions of nonlinear hyperbolic equations for small initial data. Comm Pure Appl Math, 1986, 39(2):267-282 [19] John F. Blow-up of radial solutions of utt=c2(ut)△u in three space dimensions. Mat Apl Comput, 1985, 4(1):3-18 [20] John F, Klainerman S. Almost global existence to nonlinear wave equations in three space dimensions. Comm Pure Appl Math, 1984, 37(4):443-455 [21] Klainerman S. The null condition and global existence to nonlinear wave equations. Nonlinear systems of partial differential equations in applied mathematics, Part 1(Santa Fe, N M, 1984)//Lectures in Appl Math 23. Providence, RI:Amer Math Soc, 1986:293-326 [22] Yin H C. The blowup mechanism of small data solution for the quasilinear wave equations in three space dimensions. Acta Math Sin Engl Ser, 2001, 18(1):35-76 [23] Alinhac S. An example of blowup at infinity for quasilinear wave equations. Asterisque, 2003, 284:1-91 [24] Lindblad H. Global solutions of nonlinear wave equations. Comm Pure Appl Math, 1992, 45(9):1063-1096 [25] Lindblad H. Global solutions of quasilinear wave equations. Amer J Math, 2008, 130(1):115-157 [26] Ding B B, Witt I, Yin H C. Blowup time and blowup mechanism of small data solutions to general 2-D quasilinear wave equations. Commun Pure Appl Anal, 2017, 16(3):719-744 [27] Ding B B, Witt I, Yin H C. Blowup of classical solutions for a class of 3-D quasilinear wave equations with small initial data. Differ Integral Equ, 2015, 28(9/10):941-970 [28] Ding B B, Liu Y B, Yin H C. The small data solutions of general 3D quasilinear wave equations I. SIAM J Math Anal, 2015, 47(6):4192-4228 [29] Ding B B, Witt I, Yin H C. The small data solutions of general 3D quasilinear wave equations Ⅱ. J Differ Equ, 2016, 261(2):1429-1471 [30] Alinhac S. Temps de vie des solutions des équations d'Euler compressibles axisymétriques en dimension deux. Invent Math, 1993, 111:627-670 [31] Ding B B, Witt I, Yin H C. The global smooth symmetric solution to 2-D full compressible Euler system of Chaplygin gases. J Differ Equ, 2015, 258(2):445-482 |
|