[1] Mallat S G, Zhang Z. Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 1993, 41(12): 3397–3415
[2] Qian T, Wang Y B. Adaptive Fourier series–a variation of greedy algorithm. Advances in Computational Mathematics, 2011, 34: 279–293
[3] Qian T. Intrinsic mono-component decomposition of functions: An advance of Fourier theory. Math Meth Appl Sci, 2010, 33: 880–891
[4] DeVore R A, Temlyakov V N. Some remarks on greedy algorithms. Advances in Computational Mathematics, 1996, 5: 173–187
[5] Qian T, Tan L H, Wang Y B. Adaptive decomposition by weighted inner functions: a generalization of Fourier series. J Fourier Anal Appl, 2011, 17: 175–190
[6] Qian T, Wegert E. Optimal approximation by Blaschke forms. Complex Variables and Elliptic Equations, 2013, 58: 123–133
[7] Qian T, Spr¨oßig W, Wang J X. Adaptive Fourier decomposition of functions in quaternionic Hardy spaces. Math Meth Appl Sci, 2012, 35: 43–64
[8] Brackx F, Delanghe R, Sommen F. Clifford Analysis. Boston: Pitman Advanced Publishing Program, 1982
[9] Cerejeiras P, Ferreira M, K¨ahler U, Sommen F. Continuous wavelet transform and wavelet frames on the sphere using Clifford analysis. Commun Pure Appl Anal, 2007, 6: 619–641
[10] Sakaguchi F. A larger class of wavepacket eigenfunction systems which contains Cauchy wavelets and coherent states//Proceedings of 8th IEEE Signal Processing Workshop on Statistical Signal and Array Processing. 1996: 436–439
[11] Mi W, Qian T, Wan F. A fast adaptive model reduction method based on Takenaka–Malmquist systems. Systems & Control Letters, 2012, 61: 223–230
[12] Yang Y, Qian T, Sommen F. Phase derivative of monogenic signals in higher dimensional spaces. Complex Anal Oper Theory, 2012, 6: 987–1010
[13] Gilbert J E, Murray A M. Clifford Algebras and Dirac Operators in Harmonic Analysis. Cambridge: Cambridge
University Press, 1991
[14] Mitrea M. Clifford Wavelets, Singular Integrals, and Hardy Spaces. Berlin: Springer-Verlag, 1994
[15] Qian T, Yang Y. Hilbert transforms on the sphere with the Clifford algebra setting. J Fourier Anal Appl, 2009, 15: 753–774
[16] Brackx F, De Knock B, De Schepper H, Eelbode D. On the interplay between the Hilbert transform and conjugate harmonic functions. Math Meth Appl Sci, 2006, 29: 1435–1450
[17] Brackx F, Van Acker N. A conjugate Poisson kernel in Euclidean space. Simon Stevin, 1993, 67: 3–14
[18] Ahlfors L V. M¨obius Transformations in Several Dimensions. Minneapolis: University of Minnesota, 1981
[19] Qian T, Ryan J. Conformal transformations and Hardy spaces arising in Clifford analysis. J Operator Theory, 1996, 35: 349–372 |