[1] Auscher P. On necessary and sufficient conditions for Lp-estimates of Riesz transforms associated to elliptic operators on Rn and related estimates. Mem Amer Math Soc, 2007, 186: 871
[2] Auscher P, Coulhon T, Duong X T, Hofmann S. Riesz transform on manifolds and heat kernel regularity. Ann Sci ´Ecole Norm Sup, 2004, 37: 911–957
[3] Auscher P, McIntosh A, Russ E. Hardy spaces of differential forms on Riemannian manifolds. J Geom Anal, 2008, 18: 192–248
[4] Bui A T, Cao J, Ky L D, Yang D, Yang S. Weighted Hardy spaces associated with operators satisfying reinforced off-diagonal estimates. Taiwanese J Math, 2013, 17: 1127–1166
[5] Bui A T, Cao J, Ky L D, Yang D, Yang S. Musielak-Orlicz-Hardy spaces associated with operators satisfying reinforced off-diagonal estimates. Analysis and Geometry in Metric Spaces, 2013, 1: 69–129
[6] Bui A T, Duong X T. Boundedness of singular integrals and their commutators with BMO functions on Hardy spaces. 2011, available at http://arXiv:1110.1770vl
[7] Bernicot F, Zhao J. New abstract Hardy spaces. J Funct Anal, 2008, 255: 1761–1796
[8] Blunck S. A H¨ormander-type spectral multiplier theorem for operators without heat kernel. Ann Sc Norm Super Pisa Cl Sci, 2003, 2: 449–459
[9] Chen P, Duong X T, Yan L X. Lp-bounds for Stein’s square functions associated to operators and applications to spectral multipliers. J Math Soc Japan, 2013, 65: 389–409
[10] Christ M. Lp bounds for spectral multipliers on nilpotent groups. Trans Amer Math Soc, 1991, 328: 73–81
[11] Coifman R, Weiss G. Analyse harmonique non-commutative sur certains espaces homog`enes. Lecture Notes in Mathematics 242. Berlin-New York: Springer, 1971
[12] Cao J, Yang D. Hardy-spaces HpL(Rn) associated with operators satisfying k-Davies-Gaffney estimates. Sci China Math, 2012, 55: 1403–1440
[13] Davies E B. Heat kernels and spectral theory. Cambridge Univ Press, 1989
[14] Duong X T, Li J. Hardy spaces associated to operators satisfying Davies-Gaffney estimates and bounded holomorphic functional calculus. J Funct Anal, 2013, 264: 1409–1437
[15] Duong X T, Ouhabaz E M, Sikora A. Plancherel-type estimates and sharp spectral multipliers. J Funct Anal, 2002, 196: 443–485
[16] Duong X T, Sikora A, Yan L X.Weighted norm inequalities, Gaussian bounds and sharp spectral multipliers. J Funct Anal, 2011, 206: 1106–1131
[17] Duong X T, Yan L X. Spectral multipliers for Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates. J Math Soc Japan, 2011, 63: 295–319
[18] Hofmann S, Lu G Z, Mitrea D, Mitrea M, Yan L X. Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates. Mem Amer Math Soc, 2011, 214: 1007
[19] Hofmann S, Mayboroda S. Hardy and BMO spaces associated to divergence form elliptic operators. Math Ann, 2009, 344: 37–116
[20] Igari S. A note on the Littlewood-Paley function g(f). Tohoku Math J, 1966, 18: 232–235
[21] Igari S, Kuratsubo S. A sufficient condition for Lp-multipliers. Pacific J Math, 1971, 38: 85–88
[22] Jiang R, Yang D. Orlicz-Hardy spaces associated with operators satisfying Davies-Gaffney estimates. Commun Contemp Math, 2011, 13: 331–373
[23] Jiang R, Yang D. New Orlicz-Hardy spaces associated with divergence form elliptic operators. J Funct Anal, 2010, 258: 1167–1224
[24] Jiang R, Yang Da, Yang Do. Maximal function characterizations of Hardy spaces associated with magnetic Schr¨odinger operators. Forum Math, 2012, 24: 471–494
[25] Kaneko M, Sunouchi G I. On the Littlewood-Paley and Marcinkiewicz functions in higher dimensions. Tohoku Math J, 1985, 37: 343–365
[26] Kunstmann P C, Uhl M. Spectral multiplriers theorems of H¨ormander type on Hardy and Lebesgue spaces. 2012, available at http://arXiv:1209.0358vl
[27] Ouhabaz E M. Analysis of heat equations on domains//London Math Soc, Monographs. Vol. 31. Princeton Univ Press, 2005
[28] Reed M, Simon B. Methods of Modern Mathematical Physics. Vol I. Academic Press, 1980
[29] Sikora A. Riesz transforms, Gaussian bounds and the method of wave equation. Math Z, 2004, 247: 643–662
[30] Stein E M. Localization and summability of multiple Fourier series. Acta Math, 1958, 100: 93–147
[31] Yosida K. Functional Analysis. Fifth Edition. Berlin: Spring-Verlag, 1978 |