[1] Butzer P L, Wagner H J. Walsh series and the concept of a derivative. Appl Anal, 1973, 3: 29–46
[2] Goginava U. The maximal operator of the Fej means of the character system of the p-series field in the Kaczmarz rearrangement. Publ Math Debrecen, 2007, 71(1/2): 43–55
[3] Goginava U. Weak type inequality for the one-dimensional dyadic derivative. Math Inequal Appl (to appear)
[4] Nie J Y, Li X G, Lou G W. The martingale Hardy type inequalities for dyadic derivative and integral. Acta Mathematica Sinica, English Series, 2005, 21(6): 1465–1474
[5] P´al J, Simon P. On a generalization of the concept of the derivative. Acta Math Hungar, 1977, 29: 55–164
[6] Schipp F, Wade W R, Simon P, P´al J. Walsh Series. An Introduction to Dyadic Harmonic Analysis. Bristol, New York: Adam Hilger, 1990
[7] Schipp F. ¨Uber einem Ableitungsbegriff von P. L. Butzer and H. J. Wagner. Mat Balkanica, 1974, 4: 541–546
[8] Schipp F, Simon P. On some (H,L1)-type maximal inequalities with respect to the Walsh-Paley system// Coll Math Soc J Bolyai 35. New York: North Holland, 1981: 1039–1045
[9] Weisz F. Martingale Hardy Spaces and Their Applications in Fourier Analysis. Berlin, Heidelberg, New York: Springer, 1994
[10] Weisz F. Martingale Hardy space and the dyadic derivative. Anal Math, 1998, 24: 59–77
[11] Weisz F. Summability of Multi-Dimensional Fourier Series and Hardy Space. Dordrecht: Kluwer Academic, 2002
[12] Weisz F. Weak type inequalities for the Walsh and bounded Ciesielski systems. Anal Math, 2004, 30(2): 147–160 |