[1] Bokhari A H, Al-Dweik A Y, Mahomed F M, Zaman F D. Conservation laws of a non linear (n+ 1) wave equation. Nonlinear Anal: Real World Appl, 2010, 11(4): 2862–2870
[2] Azad H, Mustafa M T. Symmetry analysis of wave equation on sphere. J Math Anal Appl, 2007, 333: 1180–1188
[3] Bessel-Hagen E. ¨Uber die Erhaltumgsatzeder Elektrodynamik. Math Ann, 1921, 84: 258–276
[4] Blauman G, Kumei S. Symmetries and Differential Equation. New York: Springer-Verlag, 1989
[5] Cheviakov A F. GeM software package for computaion of symmetries and conservation laws of differential equation. Comp Phys Commun, 2007, 176(1): 48–61
[6] Frese R N, P`amies J C, Olsen J D, Bahatyrove S, Van der Weij-de Wit C D, Aartsma T J, Otto C, Hunter C N, Frenkel D, Van Grondelle R. Protein shape and crowding drive domain formation and curvature in biological membranes. Biophs J, 2008, 94: 640–647
[7] G¨oktas ¨U, Hereman W. Symbolic computation of conserved densties for system of nonlinear evolution equation. J Symb Comput, 1997, 24: 591–621
[8] Hereman W, Adams P J, Eklund H L, Hickman M S, Herbst B M. Direct methods and symbolic software for conservation laws of nonlinear equations//Yan Z, ed. Advances of Nonlinear Waves and Symbolic Computation. New York: Nova Science, 2009: 19–79
[9] Hereman W, Colagrosso M, Sayers R, Ringler A, Deconinck B, Nivala M. Continous and discrete homotopy
operators and the computation of conservation laws//Wang D, Zheng Z, ed. Differential Equations with Symbolic Computation. Basel: Birkh¨auser, 2005: 249–285
[10] Hereman W. Symbolic computation of conservation laws of nonlinear partial differential equations in multi-dimensions. Int J Quant Chem, 2006, 106(1): 278–299
[11] Ibragimov N H, ed. CRC Handbook of Lie Group Analysis of Differential Equations, Vol 1. Symmetries, Exact Solutions and Conservations Laws. Boca Raton: CRC, 1994
[12] Jhangeer A, Naeem I, Qureshi M N. Conservation laws of (1 + n)-dimensional heat equation on curved surfaces. Nonlinear Anal Real World Appl, 2011, 12(3): 1359–1370
[13] Johnpillai A G, Kara A H, Mahomed F M. Conservation laws of a non linear (1 + 1) wave equation. Nonlinear Anal B, 2010, 11(4): 2237–2242
[14] Kara A H, Mahomed F M. Realationship between symmetries and conservation laws. Int J Theort Phy, 2000, 39: 23–40
[15] Kara A H, Mahomed F M. Noether-type symmetries and conservation laws via partial Lagrangian. Nonl Dyn, 2006, 45(3/4): 367–383
[16] Naz R, Mahomed F M, Mason D P. Comparision of different approaches to conservation laws in fluid machanics. Appl Math Comp, 2008, 205: 212–230
[17] Nother E. Invariante variations probleme. Nacr K¨onig Gesell Wissen, G¨ottingen, Math-Phys Kl Heft, 1918, 2: 235–257 (English translation in Transport Theory and Statistical Physics, 1971, 1(3): 186–207)
[18] Olver P J. Applications of Lie Groups to Differential Equations. New York, Berlin, Heidelberg, Tokyo: Springer-Verlag, 1993
[19] Schoenborn O L. Phase ordering and kinetics on curved surfaces [D]. Canada: University of Toronto, 1998
[20] Steudel H. ¨Uber die Zuordnung zwischen invarianzeigenschaften und Erhaltungssatzen. Z Naturforsch, 1962, 17A: 129–132
[21] Stubbs D. Symmetries and analytic structure of phase seperation in curved geometries [D]. Canada: University
of Western Ontario, 2001
[22] Wolf T. A comparision of four approches to the calculation of conservation laws. Euor J Appl Math, 2002, 13: 129–152
[23] Wolf T, Brand A, Mohammadzadeh M. Computer algebra algorithems and routines for the computations of conservation laws and fixing of guage in differential expressions. J Symb Comput, 1999, 27: 221–238
[24] Valiakhmetov A Y. Membrane geometry and proteins functions (reviews). Biologicheskie Membrany, 2008, 25: 83–96 |