[1] Lax P D. Weak solutions of nonlinear hyperbolic equations and their numerical computation. Comm Pure Appl Math, 1954, 7: 159–193
[2] Lax P D, Wendroff B. Systems of conservation laws. Comm Pure Appl Math, 1960, 13: 217–237
[3] Lax P D, Wendroff B. Difference schemes for hyperbolic equations with high order of accuracy. Comm Pure Appl Math, 1964, 17: 381–398
[4] Richtmyer R D. A survey of difference methods for non-steady fluid dynamics. Tech Report NCAR Technical Notes 63-2, National Center for Atmospheric Research, 1962
[5] Harten A, Lax P D, van Leer B. On upstream differencing and Godunov-type schemes for hyperbolic conaervation laws. SIAM Review, 1983, 25(1): 35–61
[6] Loubere R, Shashkov M. A subcell remapping method on staggered polygonal grids for arbitrary lagrangian eulerian methods. J Comp Phys, 2005, 209: 105–138
[7] Maire P H. A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes. J Comp Phys, 2009, 228(7): 2391–2425
[8] Farhat C, Geuzaine P, Grandmont C. The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of the flow problems on the moving grids. J Comp Phys, 2001, 174: 669–694
[9] Noh W F. Errors for calculations of strong shocks using an artificial viscosity and artificial heat flux. J Comp Phys, 1987, 72: 78–120
[10] Sedov L I. Similarity and Dimensional Methods in Mechanics. New York: Academic Press, 1959
[11] Kamm J R, Timmes F X. On efficient generation of numerically robust Sedov solutions. Tech Report LA-UR-07-2849, Los Alamos National Laboratory, 2007
[12] Caramana E J, Burton D E, Shashkov M J, Whalen P P. The construction of compatible hydrodynamics algorithms utilizing conservation of total energy. J Comp Phys, 1998, 146(1): 227–262
[13] Laney C B. Computational Gas Dynamics. Cambridge University Press, 1998
[14] Shashkov M, Wendroff B. A composite scheme for gas dynamics in Lagrangian coordinates. J Comp Phys, 1999, 150: 502–517
[15] Liska R, Shashkov M, Wendroff B. Lagrangian composite schemes on triangular unstructured grids//Kocandrlova M, Kelar V, eds. Mathematical and Computer Modelling in Science and Engineering, Inter-national Conference in honour of the 80th birthday of K. Rektorys. Prague 2003
[16] Toro E F. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. 2nd ed. Springer-Verlag, 1999
[17] Liska R, Wendroff B. Composite schemes for conservation laws. SIAM J Numer Anal, 1998, 35(6): 2250–2271 |