[1] Audusse Emmanuel, Bouchut Fran\c{c}ois, Bristeau Marie-Odile, Klein Rupert, Perthame Benoît. A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J Sci Comput, 2004, 25(6): 2050--2065
[2] Balsara Dinshaw S, Spicer Daniel S. A staggered mesh algorithm using high order {G}odunov fluxes to ensure solenodial magnetic fields in magnetohydrodynamic simulations. J Comput Phys, 1999. 149(2): 270--292
[3] Bouchut Francois. Nonlinear Stability of Finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources.
Frontiers in Mathematics. Basel: Birkh\"auser, 2004
[4] Bouchut Fran{\c c}ois, Klingenberg Christian, Waagan Knut. A multiwave approximate Riemann solver for ideal MHD based on relaxation I - theoretical framework. Numerische Mathematik, 2007, 108(1): 7--41
[5] Bouchut Fran{\c c}ois, Klingenberg Christian, Waagan Knut. A multiwave approximate Riemann solver for ideal MHD based on relaxation II - numerical implementation with 3 and 5 waves. To appear in Numerische Mathematik, 2010
[6] Brackbill J U, Barnes D C. The effect of nonzero product of magnetic gradient and B on the numerical solution of the magnetohydrodynamic equations. J Comput Phys, 1980, 35: 426--430
[7] Brio M, Wu C C. An upwind differencing scheme for the equations of ideal magnetohydrodynamics. J Comput Phys, 1988, 75(2): 400--422
[8] Dedner A, Kemm F, Kroner D, Munz C -D, Schnitzer T, Wesenberg M. Hyperbolic divergence cleaning for the MHD equations. J Comput Phys, 2002, 175(2): 645--673
[9] Fryxell B, Olson K, Ricker P, Timmes F X, Zingale M, Lamb D Q, MacNeice P, Rosner R, Truran J W, Tufo H. Flash: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes. The Astrophysical Journal Supplement Series, 2000, 131(1): 273--334
[10] Fuchs F, McMurry A, Mishra S, Risebro N H, Waagan K. Approximate Riemann-solver based High-order Finite Volume schemes for the Godunov-Powell form of the ideal MHD equations in multi-dimensions. Submitted
[11] Fuchs F, McMurry A, Mishra S, Risebro N H, Waagan K. Finite Volume Methods for Wave Propagation in Stratified Magneto-Atmospheres.
Commun Comput Phys, 2010, 7(3): 473--509
[12] Harten A, Osher S, Engquist B, Chakravarthy S R. Some results on uniformly high-order accurate essentially nonoscillatory schemes. Appl Numer Math, 1986, 2(3-5): 347--378
[13] Klingenberg Christian, Schmidt Wolfram, Waagan Knut. Numerical comparison of riemann solvers for astrophysical hydrodynamics. J Comput Phys, 2007, 227(1): 12--35
[14] Marder Barry. A method for incorporating {G}auss' law into electromagnetic pic codes. J Comput Phys, 1987, 68(1): 48--55
[15] Powell Kenneth G. An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension). Technical report, Institute for Computer Applications in Science and Engineering (ICASE), 1994
[16] Shu Chi-Wang, Osher Stanley. Efficient implementation of essentially non-oscillatory shock-capturing schemes, ii. J Comput Phys, 1989, 83(1): 32--78
[17] van Leer B. Towards the ultimate conservative difference scheme. V - A second-order sequel to {G}odunov's method. J Comput Phys, 1979, 32: 101--136
[18] Waagan K. A positive {MUSCL}-{H}ancock scheme for ideal magnetohydrodynamics. J Comput Phys, 2009, 228(23): 8609--8626
[19] Waagan Knut, Federrath Christoph, Klingenberg Christian. A robust code for astrophysical MHD. Preprint, 2010
|