[1] Butzer P L, Wagner H J. Walsh series and the concept of a derivative. Appl Anal, 1973, 3: 29–46
[2] Schipp F, Wade W R, Simon P, P´al J. Walsh series: An introduction to dyadic harmonic analysis. Bristol-New York: Adam Hilger, 1990
[3] Schipp F. Übereinen Ableitung sbegriff von P.L.Butzer and H.J.Wagner. Mat Balkanica, 1974, 4: 541–546
[4] Schipp F, Wade W R. A fundamental theorem of dyadic calculus for the unit square. Appl Anal, 1989, 34: 203–218
[5] Weisz F. Martingale Hardy spaces and the dyadic derivative. Analysis Math, 1998, 24: 59–77
[6] Weisz F. (Hp, Lp)-type inequalities for the two-dimensional dyadic derivative. Studia Math, 1996, 120: 271–288
[7] Weisz F. Some maximal inequalities with respect to two-parameter dyadic derivative and Ces`aro summability. Applic Anal, 1996, 62: 223–238
[8] Weisz F. Ces`aro summability of one- and two-dimensional Walsh-Fourier series. Analysis Math, 1996, 22: 229–242
[9] Weisz F. Martingale Hardy spaces and their applications in Fourier-analysis, volume 1568 of Lecture Notes in Math. Berlin: Springer, 1994
[10] Weisz F. Martingale Hardy spaces for 0 < p 1. Probab Th Rel Fields, 1990, 84: 361–376
[11] Nie J, Li X, Lou G. The martingale Hardy type inequalities for dyadic derivative and integral. Acta Mathematica Sinica, English series, 2005, 21(6): 1465–1474
[12] Liu P D. Martingales and geometry in Banach spaces. Wuhan: Wuhan University Press, 1993 (In Chinese)
[13] Liu P D, Hou Y L. Atomic decompositions of Banach-space-valued martingales. Science in China, Series A, 1998, 28(10): 884–892 (In Chinese)
[14] Liu P D, Yu L. B-valued small index martingale space and atom decompositions. Science in China, 2001, 31(7): 615–625 (In Chinese)
[15] Fine N J. On the Walsh functions. Trans Amer Math Soc, 1949, 65: 372–414
[16] Long R L. Martingale spaces and inequalities. Beijing: Peking University Press, 1993 |