[1] Lorentz G G. On the theory of spaces $\Lambda$. Pacific J Math, 1951, 1: 411--429
[2] Neugebauer C J. Some classical operators on Lorentz spaces. Forum Math, 1992, 4: 135--146
[3] Soria J. Lorentz spaces of weak-type. Quart J Math Oxford, 1998, 49(2): 93--103
[4] Arino M A, Munckenhoupt. Maximal functions on classical Lorentz spaces and Hardy's inequality with weights for nonincreasing functions. Trans Amer Math Soc, 1990, 320: 727--735
[5] Stepanov V. The weighted Hardy's inequality for nonincreasing functions. Trans Amer Math Soc, 1993, 338: 173--186
[6] Cerdà J, Mart\'{\i}n J. Interpolation restricted to decreasing function and Lorentz spaces. Proc Edinburgh Math Soc, 1999, 42: 243--256
[7] Boza S, Mart\'{\i}n J. Equality of some classical Lorentz spaces. Positivity, 2005, 9: 225--232
[8] Carro M J, García A, Soria J. Weighted Lorentz spaces and the Hardy operator. J Functional Analysis, 1993, 112: 480--494
[9] Carro M J, Raposo J A, Soria J. Recent Developments in the Theory of Lorentz Spaces and Weighted Inequalities. Memoirs of the American Mathematical Society, 2007, 187
[10] Weisz F. Martingale Hardy spaces and their applications in Fourier analysis. Berlin: Springer-Verlag, 1994
[11] Long R L. Martingale spaces and inequalities. Beijing: Peking University Press, 1993
[12] Liu P D. Martingales and Geometry in Banach Spaces (in Chinese). Wuhan: Wuhan University Press, 1993
[13] Bennet C, Sharply R. Interpolation of Operators. Boston: Academic Press, 1988
[14] Liu P D, Hou Y L, Wang M F. Weak Orlicz space and its applications to martingale theory (to appear)
[15] Bergh J, L\"{o}fstr\"{o}m J. Interpolation Spaces. Berlin: Springer-Verlag, 1976
[16] Grafakos L. Classical and modern Fourier analysis. Beijing: China Machine Press, 2005
[17] Holmstedt T. Interpolation of quasi-normed spaces. Math Scand, 1970, 25: 177--199
[18] Riviere N M, Sagher Y. Interpolation between L∞ and H1, the Real Method. J Functional Analysis, 1973, 14: 401--409 |