[1] Auerbach H. Sur un Problème de M. Ulam Concernant l'Equilibre des Corps Flottants. Stud Math, 1938, 7: 121-142 [2] Bárány I, Larman D G. Convex bodies, economic cap coverings, random polytopes. Mathematika, 1988, 35(2): 274-291 [3] Blaschke W. Vorlesung Über Differentialgeometrie II: Affine Differntialgeometrie. Berlin: Springer-Verlag, 1923 [4] Besau F, Werner E. The spherical convex floating body. Adv Math, 2016, 301: 867-901 [5] Besau F, Werner E. The floating body in real space forms. J Differential Geom, 2018, 110: 187-220 [6] Bracho J, Montejano L, Oliveros D. Carousels, Zindler curves and the floating body problem. Per Mat Hungarica, 2004, 2(49): 9-23 [7] Caglar U, Werner E. Divergence for s-concave and log-concave functions. Adv Math, 2014, 257: 219-247 [8] Caglar U, Werner E. Mixed f-divergence and inequalities for log-concave funtions. Proc London Math Soc, 2015, 110: 271-290 [9] Caglar U, Fradelizi M, Guédon O, et al. Functional versions of Lp-affine surface area and entropy inequalities. Int Math Res Not, 2016, 4: 1223-1250 [10] Dupin C. Application de géométrie et de méchanique. Paris, 1822 [11] Falconer K. Applications of a result on spherical integration to the theory of convex sets. Amer Math Monthly, 1983, 90: 690-69 [12] Florentin D, SchÜtt C, Werner E, Zhang N. Convex floating bodies of equilibrium. Proc Amer Math Soc, 2022, 150: 3037-3048 [13] Gruber P M. Asymptotic estimates for best and stepwise approximation of convex bodies II. Forum Math, 1993, 5: 521-538 [14] Hug D. Contributions to affine surface area. Manuscripta Math, 1996, 91: 283-301 [15] Huang H, Slomka B A. Approximations of convex bodies by measure-generated sets. Geom Dedicata, 2019, 200: 173-19 [16] Huang H, Slomka B A, Werner E. Ulam floating bodies. J London Math Soc, 2019, 100: 425-446 [17] Kiener K. Extremailtät von Ellipsoiden und die Faltungsungleichung von Sobolev. Arch Math, 1986, 46: 162-168 [18] Li B, SchÜtt C, Werner E. Floating functions. Israel J Math, 2019, 231: 181-210 [19] Liu C, Werner E, Ye D, Zhang N. Ulam floating functions. J Geom Anal, 2023, 33: 1-25 [20] Leichtweiss K. Über ein Formel Blaschkes zur Affinoberfäche. Studia Scient Math Hung, 1986, 21: 453-474 [21] Leichtweiss K. Zur Affinoberfläche konvexer Körper. Manuscripta Mathematica, 1986, 56: 429-464 [22] Ludwig M, Reitzner M. A characterization of affine surface area. Adv Math, 1999, 147: 138-172 [23] Ludwig M. General affine surface areas. Adv Math, 2010, 224: 2346-2360 [24] Lutwak E. Extended affine surface area. Adv Math, 1991, 85: 39-68 [25] Lutwak E. The Brunn-Minkowski-Firey theory II: Affine and geominimal surface areas. Adv Math, 1996, 118: 244-294 [26] McClure D, Vitale R. Polygonal approximation of plane convex bodies. J Math Anal Appl, 1975, 51: 326-358 [27] Meyer M, Werner E. The Santaló-regions of a convex body. Trans Amer Math Soc, 1998, 350: 4569-4591 [28] Meyer M, Werner E. On the p-affine surface area. Adv Math, 2000, 152: 288-313 [29] Petty C. Isoperimetric problems// Proc Conf Convexty and Combinatorial Geometry, University of Oklahoma, Norman, Okla. 1972: 26-41 [30] Ryabogin D. A negative answer to Ulam's problem 19 from the Scottish Book. Ann Math, 2022, 195: 1111-1150 [31] Ryabogin D. On bodies floating in equilibrium in every orientation. Geom Dedicata, 2023, 217: Art 70 [32] Schneider R. Functional equations connected with rotations and their geometric applications. Enseign Math, 1970, 16: 297-305 [33] Schneider R. Convex Bodies: The Brunn-Minkowski Theory, Cambridge: Cambridge Univ Press, 2014 [34] Schütt C, Werner E. The convex floating body. Math Scand, 1990, 66: 275-290 [35] SchÜtt C. The convex floating body and polyhedral approximation. Israel J Math, 1991, 73: 65-77 [36] Schütt C. On the affine surface area. Proc Am Math Soc, 1993, 118: 1213-1218 [37] SchÜtt C, Werner E. Polytopes with vertices chosen randomly from the boundary of a convex body// Geometric Aspects of Functional Analysis: lsrael Seminar. Berlin: Springer, 2003: 241-422 [38] Schütt C, Werner E. Surface bodies and p-affine surface area. Adv in Math, 2004, 187: 98-145 [39] SchÜtt C, Werner E. Homothetic floating bodies. Geom Dedicata, 1994, 49: 335-348 [40] Schütt C, Werner E. Floating Bodies. Book in preparation, to be published by the AMS. [41] Schmuckenschläger M. The distribution function of the convolution square of a convex symmetric body in Rn. Israel J Math, 1992, 78: 309-334 [42] Stancu A. Two volume product inequalities and their applications. Canad math Bull, 2009, 52: 464-472 [43] Stancu A. The floating body problem. Bull London Math Soc, 2006, 38: 839-846 [44] Ulam S. A Collection of Mathematical Problems. New York: Interscience Publishers, 1960 [45] Wegner F. Floating bodies of equilibrium. Stud Appl Math, 2003, 111: 167-183 [46] Wegner F. Floating bodies in equilibrium in 2D, the tire track problem and electrons in a parabolic magnetic fields. arXiv:physics/0701241v3 [47] Wegner F. Floating bodies of equilibrium in three dimensions. The central symmetric case. arXiv:0803.1043 [48] Werner E. The p-affine surface area and geometric interpretations. Rend Circ Math Palermo Serie II, 2002, 70: 367-382 [49] Werner E, Ye D. New Lp affine isoperimetric inequalities. Adv Math, 2008, 218: 762-780 [50] Werner E, Ye D. On the homothety conjecture. Indiana University Mathematics Journal, 2011, 60: 1-20 [51] Zhang G. Restricted chord projection and affine inequalities. Geom Dedicata, 1991, 39: 213-222 |