ECHOS OF THE STEINER-LEHMUS EQUAL BISECTORS THEOREM
Christoph Börgers1, Eric L. Grinberg2, Mehmet Orhon3, Junhao Shen4
1. Department of Mathematics, Tufts University, Medford, MA 02155, USA; 2. Department of Mathematics, University of Massachusetts Boston, Boston MA 02125, USA; 3. Department of Mathematics & Statistics, University of New Hampshire, Durham, NH 03824, USA; 4. Department of Mathematics & Statistics, University of New Hampshire, Durham, NH 03824, USA
Received:2024-09-30
Published:2025-02-06
About author:Christoph Börgers, E-mail,: cborgers@tufts.edu; Eric L. Grinberg, E-mail,: eric.grinberg@umb.edu; Mehmet Orhon, E-mail,: mo@unh.edu; Junhao Shen, E-mail,: Junhao.Shen@unh.edu
Christoph Börgers, Eric L. Grinberg, Mehmet Orhon, Junhao Shen. ECHOS OF THE STEINER-LEHMUS EQUAL BISECTORS THEOREM[J].Acta mathematica scientia,Series B, 2025, 45(1): 257-263.
[1] Bauer A. Five stages of accepting constructive mathematics. Bull Amer Math Soc, 2017, 54: 481-498 [2] Coxeter H S M, Greitzer S L. Geometry Revisited. Washington: Mathematical Association of America, 1967 [3] Gilbert G, MacDonnell D. Classroom Notes: The Steiner-Lehmus Theorem. Amer Math Monthly, 1961, 70(1): 79-80 [4] Hajja M. Stronger forms of the Steiner-Lehmus theorem. Forum Geom, 2008, 8: 157-161 [5] Nicula V, Pohoată C. A stronger form of the Steiner-Lehmus theorem. Journal for Geometry and Graphics, 2009, 13}(1): 25-27 [6] Ostermann A, Wanner G. Geometry by Its History. Heidelberg: Springer-Verlag, 2012 [7] Oláh-Gál R, Sándor J. On trigonometric proofs of the Steiner-Lehmus theorem. Forum Geom, 2009, 9: 155-160 [8] Ren D L. Topics in Integral Geometry. Singapore: World Scientific, 1994 [9] Thébault V. Sur le triangle isoscéle. The Math Gazette, 1937, 21(242): 52-53