Acta mathematica scientia,Series B ›› 2024, Vol. 44 ›› Issue (5): 1965-1983.doi: 10.1007/s10473-024-0520-5
Previous Articles Next Articles
Zhijun Zhang†, Bo Zhang
Received:
2022-08-23
Revised:
2024-05-16
Online:
2024-10-25
Published:
2024-10-22
Contact:
†Zhijun Zhang, E-mail,: About author:
Bo Zhang, E-mail,: 329175332@qq.com
Supported by:
CLC Number:
Zhijun Zhang, Bo Zhang. A SINGULAR DIRICHLET PROBLEM FOR THE MONGE-AMPÈRE TYPE EQUATION*[J].Acta mathematica scientia,Series B, 2024, 44(5): 1965-1983.
[1] Bingham N H, Goldie C M, Teugels J L. Regular Variation, Encyclopedia of Mathematics and its Applications. Cambridgeshire: Cambridge University Press, 1987 [2] Caffarelli L, Nirenberg L, Spruck J. The Dirichlet problem for nonlinear second-order elliptic equations, I. Monge-Ampère equation. Comm Pure Appl Math, 1984, 37: 369-402 [3] Calabi E. Complete affine hypersurfaces I. Symposia Math, 1972, 10: 19-38 [4] Chen H D, Huang G G. Existence and regularity of the solutions of some singular Monge-Ampère equations. J Diff Equations, 2019, 267: 866-878 [5] Cheng S Y, Yau S-T. On the regularity of the Monge-Ampère equation det $(({\partial^2u}/{\partial x^i\partial x^j} )) = F(x, u)$. Comm Pure Appl Math, 1977, 30: 41-68 [6] Cheng S Y, Yau S-T. Complete affine hypersurfaces I: The completeness of affine metrics. Comm Pure Appl Math, 1986, 39: 839-866 [7] Cîrstea F C, Trombetti C. On the Monge-Ampère equation with boundary blow-up: existence,uniqueness and asymptotics. Cal Var Partial Diff Equations, 2008, 31: 167-186 [8] Cui F, Jian H Y, Li Y. Boundary Hölder estimates for nonlinear singular elliptic equations. J Math Anal Appl, 2019, 470: 1185-1193 [9] Figalli A.The Monge-Ampère Equation and Its Applications. Zurich Lectures in Advanced Mathematics. Zurich: European Mathematical Society, 2017 [10] Gilbarg D, Trudinger N.Elliptic Partial Differential Equations of Second Order. 3rd ed. Berlin: Springer-Verlag, 1998 [11] Guan B, Jian H Y. The Monge-Ampère equation with infinite boundary value. Pacific J Math, 2004, 216: 77-94 [12] Jian H Y, Wang X J. Optimal boundary regularity for nonlinear singular elliptic equations. Adv Math, 2014, 251: 111-126 [13] Jian H Y, Wang X J, Zhao Y. Global smoothness for a singular Monge-Ampère equation. J Diff Equations, 2017, 263: 7250-7262 [14] Jian H Y, Li Y. Optimal boundary regularity for a singular Monge-Ampère equation. J Diff Equations, 2018, 264: 6873-6890 [15] Lazer A C, McKenna P J. On singular boundary value problems for the Monge-Ampère operator. J Math Anal Appl, 1996, 197: 341-362 [16] Le N Q. Optimal boundary regularity for some singular Monge-Ampère equations on bounded convex domains. Discrete Continuous Dynamical Systems, 2022, 42: 2199-2214 [17] Li D S, Ma S S. Existence and boundary behavior of solutions of Hessian equations with singular right-hand sides. J Funct Anal, 2019, 276: 2969-2989 [18] Li M N, Li Y. Global regularity for a class of Monge-Ampère type equations. Science China Math, 2022, 65: 501-516 [19] Lin F H, Wang L H. A class of fully nonlinear elliptic equations with singularity at the boundary. J Geom Anal1998, 8: 583-598 [20] Lions P L. Sur les équations de Monge-Ampère. Arch Rational Mech Anal, 1985, 89: 93-122 [21] Maric V.Regular Variation and Differential Equations. Berlin: Springer-Verlag, 2000 [22] Mohammed A. Existence and estimates of solutions to a singular Dirichlet problem for the Monge-Ampère equation. J Math Anal Appl, 2008, 340: 1226-1234 [23] Mohammed A. Singular boundary value problems for the Monge-Ampère equation. Nonlinear Anal, 2009, 70: 457-464 [24] Nirenberg L. Monge-Ampère equations associated with problems in geometry// Proc Internat Congress of Mathematicians, vol 2.Vancouver, 1974: 275-279 [25] Seneta R. Regular Varying Functions.Berlin: Springer-Verlag, 1976 [26] Sun H Y, Feng M Q. Boundary behavior of $k$-convex solutions for singular $k$-Hessian equations. Nonlinear Anal, 2018, 176: 141-156 [27] Tian G. On the existence of solutions of a class of Monge-Ampère equations. Acta Mathematica Sinica, New Series, 1988,4: 250-265 [28] Urbas J I E. Global Hölder estimates for equations of Monge-Ampère type. Invent Math, 1988, 91: 1-29 [29] Wan H T, Shi Y X, Liu W. Refined second boundary behavior of the unique strictly convex solution to a singular Monge-Ampère equation. Adv Nonlinear Anal, 2022, 11: 321-356 [30] Zhang Z J. Refined boundary behavior of the unique convex solution to a singular Dirichlet problem for the Monge-Ampère equation. Adv Nonlinear Studies, 2018, 18: 289-302 [31] Zhang Z J. Optimal global asymptotic behavior of the solution to a singular Monge-Ampère equation. Comm Pure Appl Anal, 2020, 19: 1129-1145 [32] Zhang Z J. Optimal global and boundary asymptotic behavior of large solutions to the Monge-Ampère equation. J Funct Anal, 2020, 278: Art 108512 |
[1] | Wenmin Liu, Xuexiu Zhong, Jinfang Zhou. NORMALIZED SOLUTIONS FOR THE GENERAL KIRCHHOFF TYPE EQUATIONS* [J]. Acta mathematica scientia,Series B, 2024, 44(5): 1886-1902. |
[2] | Ruijiang Wen, Jianfu Yang. MULTIPLE SOLUTIONS TO CRITICAL MAGNETIC SCHRÖDINGER EQUATIONS [J]. Acta mathematica scientia,Series B, 2024, 44(4): 1373-1393. |
[3] | Yuxi Meng, Xiaoming He. MULTIPLICITY OF NORMALIZED SOLUTIONS FOR THE FRACTIONAL SCHRÖDINGER-POISSON SYSTEM WITH DOUBLY CRITICAL GROWTH [J]. Acta mathematica scientia,Series B, 2024, 44(3): 997-1019. |
[4] | Ke JIN, Ying SHI, Huafei XIE. THE LIMITING PROFILE OF SOLUTIONS FOR SEMILINEAR ELLIPTIC SYSTEMS WITH A SHRINKING SELF-FOCUSING CORE [J]. Acta mathematica scientia,Series B, 2024, 44(2): 583-608. |
[5] | Huirong PI, Yong ZENG. EXISTENCE RESULTS FOR THE KIRCHHOFF TYPE EQUATION WITH A GENERAL NONLINEAR TERM [J]. Acta mathematica scientia,Series B, 2022, 42(5): 2063-2077. |
[6] | Narimane AISSAOUI, Wei LONG. POSITIVE SOLUTIONS FOR A KIRCHHOFF EQUATION WITH PERTURBED SOURCE TERMS [J]. Acta mathematica scientia,Series B, 2022, 42(5): 1817-1830. |
[7] | Yujuan CHEN, Lei WEI, Yimin ZHANG. THE ASYMPTOTIC BEHAVIOR AND SYMMETRY OF POSITIVE SOLUTIONS TO p-LAPLACIAN EQUATIONS IN A HALF-SPACE [J]. Acta mathematica scientia,Series B, 2022, 42(5): 2149-2164. |
[8] | Wenqing WANG, Anmin MAO. THE EXISTENCE AND NON-EXISTENCE OF SIGN-CHANGING SOLUTIONS TO BI-HARMONIC EQUATIONS WITH A p-LAPLACIAN [J]. Acta mathematica scientia,Series B, 2022, 42(2): 551-560. |
[9] | Salvatore LEONARDI, Nikolaos S. PAPAGEORGIOU. ARBITRARILY SMALL NODAL SOLUTIONS FOR PARAMETRIC ROBIN (p,q)-EQUATIONS PLUS AN INDEFINITE POTENTIAL [J]. Acta mathematica scientia,Series B, 2022, 42(2): 561-574. |
[10] | Zhenhai LIU, Nikolaos S. PAPAGEORGIOU. ANISOTROPIC (p,q)-EQUATIONS WITH COMPETITION PHENOMENA [J]. Acta mathematica scientia,Series B, 2022, 42(1): 299-322. |
[11] | Nikolaos S. PAPAGEORGIOU, Nikolaos S. PAPAGEORGIOU, Calogero VETRO. ON NONCOERCIVE (p,q)-EQUATIONS [J]. Acta mathematica scientia,Series B, 2021, 41(5): 1788-1808. |
[12] | Yongsheng JIANG, Na WEI, Yonghong WU. MULTIPLE SOLUTIONS FOR THE SCHRÖDINGER-POISSON EQUATION WITH A GENERAL NONLINEARITY [J]. Acta mathematica scientia,Series B, 2021, 41(3): 703-711. |
[13] | Abdelkrim MOUSSAOUI, Jean VELIN. EXISTENCE AND BOUNDEDNESS OF SOLUTIONS FOR SYSTEMS OF QUASILINEAR ELLIPTIC EQUATIONS [J]. Acta mathematica scientia,Series B, 2021, 41(2): 397-412. |
[14] | Jianhua CHEN, Xianjiu HUANG, Bitao CHENG, Xianhua TANG. EXISTENCE AND CONCENTRATION BEHAVIOR OF GROUND STATE SOLUTIONS FOR A CLASS OF GENERALIZED QUASILINEAR SCHRÖDINGER EQUATIONS IN $\mathbb{R}^N$ [J]. Acta mathematica scientia,Series B, 2020, 40(5): 1495-1524. |
[15] | Xueliang DUAN, Gongming WEI, Haitao YANG. POSITIVE SOLUTIONS AND INFINITELY MANY SOLUTIONS FOR A WEAKLY COUPLED SYSTEM [J]. Acta mathematica scientia,Series B, 2020, 40(5): 1585-1601. |
|