Acta mathematica scientia,Series B ›› 2024, Vol. 44 ›› Issue (1): 195-214.doi: 10.1007/s10473-024-0111-5
Previous Articles Next Articles
Shijin Ding, Yinghua Li†, Yu Wang
Received:
2022-09-23
Revised:
2023-06-16
Online:
2024-02-25
Published:
2024-02-27
Contact:
† Yinghua Li,E-mail:yinghua@scnu.edu.cn
About author:
Shijin Ding, E-mail: dingsj@scnu.edu.cn; Yu Wang, E-mail: yuwang@m.scnu.edu.cn
Supported by:
CLC Number:
Shijin Ding, Yinghua Li, Yu Wang. GLOBAL SOLUTIONS TO 1D COMPRESSIBLE NAVIER-STOKES/ALLEN-CAHN SYSTEM WITH DENSITY-DEPENDENT VISCOSITY AND FREE-BOUNDARY*[J].Acta mathematica scientia,Series B, 2024, 44(1): 195-214.
[1] Blesgen T. A generalizaion of the Navier-Stokes equations to two-phase flow. J Phys D Appl Phys, 1999, 32: 1119-1123 [2] Chen M X, Guo X. Global large solutions for a coupled compressible Navier-Stokes/Allen-Cahn system with initial vacuum. Nonlinear Anal Real World Appl, 2017, 37: 350-373 [3] Chen S, Zhu C. Blow-up criterion and the global existence of strong/classical solutions to Navier-Stokes/Allen-Cahn system. Z Angew Math Phys, 2021, 72(1): Art 14 [4] Chen Y, He Q, Huang B, Shi X. Global strong solution to a thermodynamic compressible diffuse interface model with temperature dependent heat-conductivity in 1-D. Math Methods Appl Sci, 2021, 44: 12945-12962 [5] Chen Y, He Q, Huang B, Shi X.The Cauchy problem for non-isentropic compressible Navier-Stokes/Allen-Cahn system with degenerate heat-conductivity. arXiv:2005.11205 [6] Dai W, Ding S, Li Y.Global strong solutions of the compressible Navier-Stokes/Allen-Cahn system with density-dependent viscosity. preprint [7] Ding S, Huang J, Liu X, Wen H. Global C$^\infty$-solutions to 1D compressible Navier-Stokes equations with density-dependent viscosity. Math Methods Appl Sci, 2011, 34(12): 1499-1511 [8] Ding S, Li Y, Luo W. Global solutions for a coupled compressible Navier-Stokes/Allen-Cahn system in 1D. J Math Fluid Mech, 2013, 15(2): 335-360 [9] Ding S, Li Y, Tang Y. Strong solutions to 1D compressible Navier-Stokes/Allen-Cahn system with free boundary. Math Methods Appl Sci, 2019, 42(14): 4780-4794 [10] Freist$\rm\ddot{u}$hler H, Kotschote M. Phase-field and Korteweg-type models for the time-dependent flow of compressible two-phase fluids. Arch Ration Mech Anal, 2017, 224(1): 1-20 [11] Fang D, Zhang T. Compressible Navier-Stokes equations with vacuum state in one dimension. Commun Pure Appl Anal, 2004, 3(4): 675-694 [12] Fang D, Zhang T. Compressible Navier-Stokes equations with vacuum state in the case of general pressure law. Math Methods Appl Sci, 2006, 29(10): 1081-1106 [13] Grad H.Asymptotic theory of the Boltzmann equation II//Laurmann J, ed. Rarefied Gas Dynamics, Vol 1. New York: Academic Press, 1963: 26-59 [14] Guo Z, Jiang S, Xie F. Global existence and asymptotic behavior of weak solutions to the 1D compressible Navier-Stokes equations with degenerate viscosity coefficient. Asymptot Anal, 2008, 60(1/2): 101-123 [15] He Q, Shi X. Energy stable discontinuous Galerkin method for compressible Navier-Stokes-Allen-Cahn system. Commun Nonlinear Sci Numer Simul, 2021, 98: Art 105771 [16] Heida M, Malek J, Rajagopal K R. On the development and generalizations of Allen-Cahn and Stefan equations within a thermodynamic framework. Z Angew Math Phys, 2012, 63: 759-776 [17] Jiang S. Global smooth solutions of the equations of a viscous, heat-conducting, one-dimensional gas with density-dependent viscosity. Math Nachr, 1998, 190: 169-183 [18] Jiang S, Xin Z, Zhang P. Global weak solutions to 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity. Methods Appl Anal, 2005, 12(3): 239-251 [19] Kong H, Li, H, Zhang X. A blow-up criterion of spherically symmetric strong solutions to 3d compressible Navier-Stokes equations with free boundary. Acta Math Sci, 2016, 36B(4): 1153-1166 [20] Li Y, Yan Y, Ding S, Chen G. Global weak solutions fro 1D compressible Navier-Stokes/Allen-Cahn system with vacuum. Z Angew Math Phys, 2023, 74(1): Art 2 [21] Liu J. Local existence of solution to free boundary value problem for compressible Navier-Stokes equations. Acta Math Sci, 2012, 32B(4): 1298-1320 [22] Liu T, Xin Z, Yang T. Vacuum states of compressible flow. Discrete Conti Dyn Syst, 1998, 4: 1-32 [23] Okada M, Matu$\rm\breve{s}\dot{u}$-Ne$\rm\breve{c}$asov$\rm\acute{a}$ $\rm\breve{S}$, Makino T. Free boundary problem for the equation of one-dimensional motion of compressible gas with density-dependent viscosity. Ann Univ Ferrara Sez VII (NS), 2002, 48: 1-20 [24] Qin Y, Huang L, Yao Z. Regularity of 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity. J Differ Equ, 2008, 245: 3956-3973 [25] Su M. On global classical solutions to one-dimensional compressible Navier-Stokes/Allen-Cahn system with density-dependent viscosity and vacuum. Bound Value Probl, 2021, 2021: Art 92 [26] Vong S W, Yang T, Zhu C, Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum (II). J Differ Equ, 2003, 192(2): 475-501 [27] Yan Y, Ding S, Li Y. Strong solutions for 1D compressible Navier-Stokes/Allen-Cahn system with phase variable dependent viscosity. J Differ Equ, 2022, 326(25): 1-48 [28] Yang X. A novel fully decoupled scheme with second-order time accuracy and unconditional energy stability for the Navier-Stokes equations coupled with mass-conserved Allen-Cahn phase-field model of two-phase incompressible flow. Internat J Numer Methods Engrg, 2021, 122(5): 1283-1306 [29] Yang T, Yao Z, Zhu C. Compressible Navier-Stokes equations with density-dependent viscosity and vacuum. Commun Partial Differ Equ, 2001, 26(5/6): 965-981 [30] Yang T, Zhu C. Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum. Comm Math Phys, 2002, 230(2): 329-363 [31] Yang T, Zhao H. A vacuum problem for the one-dimensional compressible Navier-Stokes equations with density-dependent viscosity. J Differ Equ, 2002, 184(1): 163-184 [32] Zhang J. Regularity of solutions to 1D compressible Navier-Stokes-Allen-Cahn system. Appl Anal, 2021, 100(9): 1827-1842 |
[1] | Xiaohui Wang. CONVEXITY OF THE FREE BOUNDARY FOR AN AXISYMMETRIC INCOMPRESSIBLE IMPINGING JET* [J]. Acta mathematica scientia,Series B, 2024, 44(1): 234-246. |
[2] | Fucai Li, Yue Li, Baoyan Sun. GLOBAL WEAK SOLUTIONS TO A THREE-DIMENSIONAL QUANTUM KINETIC-FLUID MODEL* [J]. Acta mathematica scientia,Series B, 2023, 43(5): 2089-2107. |
[3] | Qianfeng Li, Yongqian Zhang. THE GLOBAL LIPSCHITZ SOLUTION FOR A PEELING MODEL* [J]. Acta mathematica scientia,Series B, 2023, 43(5): 2263-2278. |
[4] | Chung-Kwong Chan, Huichun Zhang, Xiping Zhu. MONOTONICITY FORMULAS FOR PARABOLIC FREE BOUNDARY PROBLEMS ON CONES [J]. Acta mathematica scientia,Series B, 2022, 42(6): 2193-2203. |
[5] | Yifan SU, Zhenhua GUO. ZERO DISSIPATION LIMIT TO RAREFACTION WAVES FOR THE ONE-DIMENSIONAL COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH SELECTED DENSITY-DEPENDENT VISCOSITY [J]. Acta mathematica scientia,Series B, 2021, 41(5): 1635-1658. |
[6] | Meng ZHAO, Wantong LI, Jiafeng CAO. DYNAMICS FOR AN SIR EPIDEMIC MODEL WITH NONLOCAL DIFFUSION AND FREE BOUNDARIES [J]. Acta mathematica scientia,Series B, 2021, 41(4): 1081-1106. |
[7] | Jianwei DONG, Manwai YUEN. SOME SPECIAL SELF-SIMILAR SOLUTIONS FOR A MODEL OF INVISCID LIQUID-GAS TWO-PHASE FLOW [J]. Acta mathematica scientia,Series B, 2021, 41(1): 114-126. |
[8] | Guochun WU, Zhong TAN, Jiankai XU. ON THE HEAT FLOW OF EQUATION OF H-SURFACE [J]. Acta mathematica scientia,Series B, 2019, 39(5): 1397-1405. |
[9] | Abdul-Majeed AL-IZERI, Khalid LATRACH. NONLINEAR SEMIGROUP APPROACH TO TRANSPORT EQUATIONS WITH DELAYED NEUTRONS [J]. Acta mathematica scientia,Series B, 2018, 38(6): 1637-1654. |
[10] | Haiping NIU, Shu WANG. SOLUTIONS TO QUASILINEAR HYPERBOLIC CONSERVATION LAWS WITH INITIAL DISCONTINUITIES [J]. Acta mathematica scientia,Series B, 2018, 38(1): 203-219. |
[11] | Dongcheng YANG. THE VLASOV-MAXWELL-FOKKER-PLANCK SYSTEM WITH RELATIVISTIC TRANSPORT IN THE WHOLE SPACE [J]. Acta mathematica scientia,Series B, 2017, 37(5): 1237-1261. |
[12] | Nermina MUJAKOVIC, Nelida CRNJARIC-ZIC. GLOBAL SOLUTION TO 1D MODEL OF A COMPRESSIBLE VISCOUS MICROPOLAR HEAT-CONDUCTING FLUID WITH A FREE BOUNDARY [J]. Acta mathematica scientia,Series B, 2016, 36(6): 1541-1576. |
[13] | Abdul-Majeed AL-IZERI, Khalid LATRACH. WELL-POSEDNESS OF A NONLINEAR MODEL OF PROLIFERATING CELL POPULATIONS WITH INHERITED CYCLE LENGTH [J]. Acta mathematica scientia,Series B, 2016, 36(5): 1225-1244. |
[14] | Hua CHEN, Wenbin LÜ, Shaohua WU. SOLVABILITY OF A PARABOLIC-HYPERBOLIC TYPE CHEMOTAXIS SYSTEM IN 1-DIMENSIONAL DOMAIN [J]. Acta mathematica scientia,Series B, 2016, 36(5): 1285-1304. |
[15] | Yulin YE. GLOBAL CLASSICAL SOLUTION TO THE CAUCHY PROBLEM OF THE 3-D COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH DENSITY-DEPENDENT VISCOSITY [J]. Acta mathematica scientia,Series B, 2016, 36(5): 1419-1432. |
|