Acta mathematica scientia,Series B ›› 2016, Vol. 36 ›› Issue (5): 1225-1244.doi: 10.1016/S0252-9602(16)30066-2

• Articles •     Next Articles

WELL-POSEDNESS OF A NONLINEAR MODEL OF PROLIFERATING CELL POPULATIONS WITH INHERITED CYCLE LENGTH

Abdul-Majeed AL-IZERI, Khalid LATRACH   

  1. Universite Blaise Pascal(Clermont II) Laboratoire de Mathématiques, CNRS UMR 6620 Campus des Cézeaux-B. P. 80026, 63171 Aubière Cedex France
  • Received:2015-05-13 Revised:2015-09-02 Online:2016-10-25 Published:2016-10-25
  • Contact: Khalid LATRACH,Khalid.Latrach@math.univ-bpclermont.fr E-mail:Khalid.Latrach@math.univ-bpclermont.fr

Abstract:

This paper deals with a nonlinear initial boundary values problem derived from a modified version of the so called Lebowitz and Rubinow's model[16] discussed in[8, 9] modeling a proliferating age structured cell population with inherited properties. We give existence and uniqueness results on appropriate weighted Lp-spaces with 1≤p<∞ in the case where the rate of cells mortality σ and the transition rate k are depending on the total density of population. General local and nonlocal reproduction rules are considered.

Key words: evolution equation, local and nonlocal boundary conditions, quasi-accretive operators, mild solutions, strong solutions, local and global solutions

CLC Number: 

  • 47H06
Trendmd