[1] Ambrosio L. Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces. Adv Math, 2001, 159(1): 51-67 [2] Ambrosio L. Fine properties of sets of finite perimeter in doubling metric measure spaces. Set-Valued Anal, 2022, 10(2/3): 111-128 [3] Ambrosio L.Calculus, heat flow and curvature-dimension bounds in metric measure spaces// Proceedings of the International Congress of Mathematicians--Rio de Janeiro 2018. Vol. I. Plenary Lectures. Hackensack, NJ: World Sci Publ, 2018: 301-340 [4] Ambrosio L, Brué E, Semola D. Rigidity of the 1-Bakry-émery inequality and sets of finite perimeter in RCD spaces. Geom Funct Anal, 2019, 29(4): 949-1001 [5] Ambrosio L, Gigli N, Savaré G. Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Invent Math, 2014, 195(2): 289-391 [6] Ambrosio L, Gigli N, Savaré G. Metric measure spaces with Riemannian Ricci curvature bounded from below. Duke Math J, 2014, 163(7): 1405-1490 [7] Ambrosio L, Gigli N, Savaré G. Bakry-émery curvature-dimension condition and Riemannian Ricci curvature bounds. Ann Probab, 2015, 43(1): 339-404 [8] Ambrosio L, Honda S.New stability results for sequences of metric measure spaces with uniform Ricci bounds from below. Measure theory in non-smooth spaces//Partial Differ Equ Meas Theory. Warsaw: De Gruyter Open, 2017: 1-51 [9] Ambrosio L, Mondino A, Savaré G. On the Bakry-émery condition, the gradient estimates and the local-to-global property of ${RCD}^*(K, N)$ metric measure spaces. J Geom Anal, 2016, 26(1): 24-56 [10] Björn A, Björn J. Nonlinear Potential Theory on Metric Spaces. EMS Tracts in Mathematics, 17. Zürich: European Mathematical Society (EMS), 2011 [11] Brué E, Pasqualetto E, Semola D. Rectifiability of the reduced boundary for sets of finite perimeter over ${ RCD(K, N)}$ spaces. J Eur Math Soc, 2023, 25(2): 413-465 [12] Brué E, Pasqualetto E, Semola D.Constancy of the dimension in codimension one and locality of the unit normal on ${ RCD(K, N)}$ spaces. preprint arXiv: 2109.12585 [13] Caffarelli L A. The regularity of free boundaries in higher dimensions. Acta Math, 1977, 139(3/4): 155-184 [14] Caffarelli L A. The obstacle problem revisited. J Fourier Anal Appl, 1998 4(4/5): 383-402 [15] Cavalletti F, Milman E. The globalization theorem for the curvature-dimension condition. Invent Math, 2021, 226(1): 1-137 [16] Chan C K, Zhang H C, Zhu X P. Monotonicity formulas for parabolic free boundary problems on cones. Acta Math Sci, 2022, 42B(6): 2193-2203 [17] Chan C K, Zhang H C, Zhu X P.One-phase free boundary problems on ${RCD}$ metric measure spaces. preprint arXiv: 2112.06962 [18] Cheeger J. Differentiability of Lipschitz functions on metric measure spaces. Geom Funct Anal, 1999, 9(3): 428-517 [19] Cheeger J, Colding T H. Lower bounds on Ricci curvature and the almost rigidity of warped products. Ann of Math, 1996, 144(1): 189-237 [20] Cheeger J, Colding T H. On the structure of spaces with Ricci curvature bounded below. I. J Differential Geom, 1997, 46(3): 406-480 [21] Colombo M, Spolaor L, Velichkov B. A logarithmic epiperimetric inequality for the obstacle problem. Geom Funct Anal, 2018, 28(4): 1029-1061 [22] De Philippis G, Gigli N. Non-collapsed spaces with Ricci curvature bounded from below. J éc Polytech Math, 2018, 5: 613-650 [23] Erbar M, Kuwada K, Sturm K T. On the equivalence of the entropic curvature-dimension condition and Bochner's inequality on metric measure spaces. Invent Math, 2015, 201(3): 993-1071 [24] Figalli A, Ros-Oton X, Serra J. Generic regularity of free boundaries for the obstacle problem. Publ Math Inst Hautes études Sci, 2020, 132: 181-292 [25] Figalli A, Serra J. On the fine structure of the free boundary for the classical obstacle problem. Invent Math, 2019, 215(1): 311-366 [26] Gigli N. On the differential structure of metric measure spaces and applications. Mem Amer Math Soc, 2015, 236(1113): vi+91 [27] Gigli N, Mondino A, Savaré G. Convergence of pointed non-compact metric measure spaces and stability of Ricci curvature bounds and heat flows. Proc Lond Math Soc, 2015, 111(5): 1071-1129 [28] Gigli N, Violo I Y.Monotonicity formulas for harmonic functions in ${ RCD(0, N)}$ spaces. preprint arXiv: 2101.03331 [29] Hajl asz P, Koskela P. Sobolev met Poincaré. Mem Amer Math Soc, 2000, 145(688): x+101 [30] Jiang R. Lipschitz continuity of solutions of Poisson equations in metric measure spaces. Potential Anal, 2012, 37(3): 281-301 [31] Kinnunen J, Shanmugalingam N. Regularity of quasi-minimizers on metric spaces. Manuscripta Math, 2001, 105(3): 401-423 [32] Lott J, Villani C. Ricci curvature for metric-measure spaces via optimal transport. Ann of Math, 2009, 169(3): 903-991 [33] Miranda Jr M. Functions of bounded variation on "good" metric spaces. J Math Pures Appl, 2003, 82(8): 975-1004 [34] Mondino A, Naber A. Structure theory of metric measure spaces with lower Ricci curvature bounds. J Eur Math Soc, 2019, 21(6): 1809-1854 [35] Monneau R. On the number of singularities for the obstacle problem in two dimensions. J Geom Anal, 2003, 13(2): 359-389 [36] Petrunin A. Alexandrov meets Lott-Villani-Sturm. Münster J Math, 2011, 4: 53-64 [37] Shanmugalingam N. Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev Mat Iberoamericana, 2000, 16(2): 243-279 [38] Sturm K T. On the geometry of metric measure spaces. I. Acta Math, 2006, 196(1): 65-131 [39] Sturm K T. On the geometry of metric measure spaces. II. Acta Math, 2006, 196(1): 133-177 [40] Villani C. Optimal Transport.Grundlehren der mathematischen Wissenschaften, 338. Berlin: Springer-Verlag, 2009 [41] Weiss G S. A homogeneity improvement approach to the obstacle problem. Invent Math, 1999, 138(1): 23-50 [42] Zhang H C, Zhu X P. Ricci curvature on Alexandrov spaces and rigidity theorems. Comm Anal Geom, 2010, 18(3): 503-553 |