Acta mathematica scientia,Series B ›› 2023, Vol. 43 ›› Issue (6): 2398-2412.doi: 10.1007/s10473-023-0605-6
Previous Articles Next Articles
Shanli YE†, Guanghao FENG
Received:
2022-06-29
Revised:
2023-05-12
Published:
2023-12-08
Contact:
†Shanli YE, E-mail: slye@zust.edu.cn
About author:
Guanghao FENG, E-mail: gh945917454@foxmail.com
Supported by:
CLC Number:
Shanli YE, Guanghao FENG. A DERIVATIVE-HILBERT OPERATOR ACTING ON HARDY SPACES*[J].Acta mathematica scientia,Series B, 2023, 43(6): 2398-2412.
[1] Anderson J, Pommerenke C, Clunie J. On Bloch functions and normal functions. J Reine Angew Math, 1974, 270(1): 12-37 [2] Chatzifountas C, Girela D, Peláez J Á. A generalized Hilbert matrix acting on Hardy spaces. J Math Anal Appl, 2014, 413(1): 154-168 [3] Carleson L. Interpolations by bounded analytic functions and the corona problem. Ann of Math, 1962, 76(3): 547-559 [4] Cowen C C, MacCluer B D. Composition Operators on Spaces of Analytic Functions. Boca Raton: CRC Press, 1995 [5] Cwikel M, Kalton N J. Interpolation of compact operators by the methods of Calderón and Gustavsson-Peetre. Proc Edinburgh Math Soc, 1995, 38(2): 261-276 [6] Deng F, Ouyan C, Deng G. Some questions regarding verification of Carleson measure. Acta Math Sci, 2021, 41B(6): 2136-2148 [7] Diamantopoulos E, Siskakis A G. Composition operators and the Hilbert matrix. Studia Math, 2000, 140(2): 191-198 [8] Duren P L. Extension of a theorem of Carleson. Bull Amer Math Soc, 1969, 75: 143-146 [9] Duren P L.Theory of ![]() ![]() [10] Duren P L, Romberg B W, Shields A L. Linear functionals on ![]() ![]() ![]() ![]() ![]() ![]() ![]() [11] Galanopoulos P, Girela D, Peláez J Á, Siskakis A G. Generalized Hilbert operators. Ann Acad Sci Fenn Math, 2014, 39: 231-258 [12] Galanopoulos P, Peláez J Á. A Hankel matrix acting on Hardy and Bergman spaces. Studia Math, 2010, 200(3): 201-220 [13] Girela D.Analytic functions of bounded mean oscillation//Complex Function Spaces, University Joensuu Dept Math Rep Ser, vol 4. Joensuu: University Joensuu, 2001: 61-170 [14] Girela D, Merchán N. A generalized Hilbert operator acting on conformally invariant spaces. Banach J Math Anal, 2016, 12(2): 374-398 [15] Gnuschke-Hauschild D, Pommerenke C. On Bloch functions and gap series. J Reine Angew Math, 1986, 367: 172-186 [16] Li S, Zhou J. Essential norm of generalized Hilbert matrix from Bloch type spaces to BMOA and Bloch space. AIMS Math, 2021, 6: 3305-3318 [17] Maccluer B, Zhao R. Vanishing logarithmic Carleson measures. Illinois J Math, 2002, 46(2): 507-518 [18] Ye S, Zhou Z. A derivative-Hilbert operator acting on the Bloch space. Complex Anal Oper Theory, 2021, 15(5): 88 [19] Ye S, Zhou Z. A derivative-Hilbert operator acting on Bergman spaces. J Math Anal Appl, 2022, 506(1): 125553 [20] Zhao R. On logarithmic Carleson measures. Acta Sci Math, 2003, 69: 605-618 [21] Zhu K. Bloch type spaces of analytic functions. Rocky Mountain J Math, 1993, 23(3): 1143-1177 [22] Zhu K.Operator Theory in Function Spaces. Surveys Monoge 138. 2nd ed. Providence RI: Amer Math Soc, 2007 |
[1] | Yanyan han, Huoxiong wu. THE FRACTIONAL TYPE MARCINKIEWICZ INTEGRALS AND COMMUTATORS ON WEIGHTED HARDY SPACES* [J]. Acta mathematica scientia,Series B, 2023, 43(5): 1981-1996. |
[2] | Guangfu Cao, Li He, Yiyuan Zhang. REVERSE CARLESON MEASURES ON GENERALIZED FOCK SPACES* [J]. Acta mathematica scientia,Series B, 2023, 43(2): 655-667. |
[3] | Ru PENG, Yaqing FAN. TOEPLITZ OPERATORS FROM HARDY SPACES TO WEIGHTED BERGMAN SPACES IN THE UNIT BALL OF Cn [J]. Acta mathematica scientia,Series B, 2022, 42(1): 349-363. |
[4] | Fangwen DENG, Caiheng OUYANG, Guantie DENG. SOME QUESTIONS REGARDING VERIFICATION OF CARLESON MEASURES [J]. Acta mathematica scientia,Series B, 2021, 41(6): 2136-2148. |
[5] |
Guanlong BAO, Hasi WULAN.
![]() ![]() |
[6] | Wei DING, Yueping ZHU. MIXED HARDY SPACES AND THEIR APPLICATIONS [J]. Acta mathematica scientia,Series B, 2020, 40(4): 945-969. |
[7] | Ru PENG, Xiaolei XING, Liangying JIANG. POINTWISE MULTIPLICATION OPERATORS FROM HARDY SPACES TO WEIGHTED BERGMAN SPACES IN THE UNIT BALL OF Cn [J]. Acta mathematica scientia,Series B, 2019, 39(4): 1003-1016. |
[8] | Lin YU, Ruhui WANG, Shoujiang ZHAO. CARLESON MEASURES AND THE GENERALIZED CAMPANATO SPACES OF VECTOR-VALUED MARTINGALES [J]. Acta mathematica scientia,Series B, 2018, 38(6): 1779-1788. |
[9] | Ru PENG, You WU, Fangwen DENG. CARLESON MEASURES, RIEMANN-STIELTJES OPERATORS AND MULTIPLIERS ON F(p, q, s) SPACES IN THE UNIT BALL OF Cn [J]. Acta mathematica scientia,Series B, 2016, 36(3): 635-654. |
[10] | Abdugheni ABDUREXIT, Turdebek N. BEKJAN. NONCOMMUTATIVE ORLICZ-HARDY SPACES [J]. Acta mathematica scientia,Series B, 2014, 34(5): 1584-1592. |
[11] | YAN Xue-Fang. BOUNDEDNESS OF STEIN´S SQUARE FUNCTIONS ASSOCIATED TO OPERATORS ON HARDY SPACES [J]. Acta mathematica scientia,Series B, 2014, 34(3): 891-904. |
[12] | PENG Ru, OUYANG Cai-Heng. CARLESON MEASURES FOR BESOV-SOBOLEV SPACES WITH APPLICATIONS IN THE UNIT BALL OF Cn [J]. Acta mathematica scientia,Series B, 2013, 33(5): 1219-1230. |
[13] | CHEN Ze-Qan, YIN Zhi. ANALYTIC HARDY SPACES ON THE QUANTUM TORUS [J]. Acta mathematica scientia,Series B, 2011, 31(5): 1985-1996. |
[14] | WANG Xiong-Liang, LIU Ta-Shun. COMPOSITION TYPE OPERATORS FROM HARDY SPACES TO μ-BLOCH SPACES ON THE UNIT BALL [J]. Acta mathematica scientia,Series B, 2009, 29(5): 1430-1438. |
[15] | ZHU Yue-Ping. AREA FUNCTIONS ON HARDY SPACESASSOCIATED TO SCHR¨|ODINGER OPERATORS [J]. Acta mathematica scientia,Series B, 2003, 23(4): 521-. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 6
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 86
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|